อาร์คิมิดีส (กรีกโบราณ: Ἀρχιμήδης, : [ar.kʰi.mɛː.dɛ̂ːs]; อังกฤษ: Archimedes; ป. 287 – 212 ปีก่อน ค.ศ.) เป็นนักคณิตศาสตร์ นักดาราศาสตร์ นักปรัชญา นักฟิสิกส์ และวิศวกรชาวกรีก เกิดเมื่อ 287 ปีก่อนคริสตกาล ในเมืองซีรากูซา ซึ่งในเวลานั้นเป็นนิคมท่าเรือของกรีก แม้จะมีรายละเอียดเกี่ยวกับชีวิตของเขาน้อยมาก แต่เขาก็ได้รับยกย่องว่าเป็นหนึ่งในบรรดานักวิทยาศาสตร์ชั้นนำในสมัยคลาสสิก ความก้าวหน้าในงานด้านฟิสิกส์ของเขาเป็นรากฐานให้แก่วิชา สถิตยศาสตร์ของไหล, สถิตยศาสตร์ และการอธิบายหลักการเกี่ยวกับคาน เขาได้ชื่อว่าเป็นผู้คิดค้นนวัตกรรมเครื่องจักรกลหลายชิ้น ซึ่งรวมไปถึงปั๊มเกลียว (screw pump) ซึ่งได้ตั้งชื่อตามชื่อของเขาด้วย ผลการทดลองในยุคใหม่ได้พิสูจน์แล้วว่า เครื่องจักรที่อาร์คิมิดีสออกแบบนั้นสามารถยกเรือขึ้นจากน้ำหรือสามารถจุดไฟเผาเรือได้โดยอาศัยแถบกระจกจำนวนมาก
อาร์คิมิดีสแห่งซีรากูซา Ἀρχιμήδης | |
---|---|
อาร์คิมิดีสกำลังครุ่นคิด โดย (1620) | |
เกิด | ประมาณ 287 ปีก่อน ค.ศ. ซีรากูซา ซิซิลี มังนาไกรกิอา |
เสียชีวิต | ประมาณ 212 ปีก่อน ค.ศ. (อายุประมาณ 75 ปี) ซีรากูซา |
มีชื่อเสียงจาก | หลักการของอาร์คิมิดีส, เกลียวอาร์คิมิดีส, สถิตยศาสตร์ของไหล, คาน, กณิกนันต์ |
อาชีพทางวิทยาศาสตร์ | |
สาขา | คณิตศาสตร์, ฟิสิกส์, วิศวกรรม, ดาราศาสตร์, |
อาร์คิมิดีสได้รับยกย่องอย่างกว้างขวางว่าเป็นนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดในยุคโบราณ และหนึ่งในนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดตลอดกาล เช่นเดียวกับ นิวตัน เกาส์ และ ออยเลอร์ เขาใช้ระเบียบวิธีเกษียณ (Method of Exhaustion) ในการคำนวณพื้นที่ใต้เส้นโค้งพาราโบลาด้วยการหาผลรวมของชุดอนุกรมอนันต์ และได้ค่าประมาณที่ใกล้เคียงที่สุดของค่าพาย เขายังกำหนดนิยามแก่วงก้นหอยของอาร์คิมิดีส ซึ่งได้ชื่อตามชื่อของเขา, คิดค้นสมการหาปริมาตรของรูปทรงที่เกิดจากพื้นผิวที่ได้จากการหมุน และคิดค้นระบบสำหรับใช้บ่งบอกถึงตัวเลขจำนวนใหญ่มาก ๆ
อาร์คิมิดีสเสียชีวิตในระหว่างการล้อมซีราคิวส์ (ราว 214-212 ปีก่อนคริสตกาล) โดยถูกทหารโรมันคนหนึ่งสังหาร ทั้ง ๆ ที่มีคำสั่งมาว่าห้ามทำอันตรายแก่อาร์คิมิดีส กิแกโรบรรยายถึงการเยี่ยมหลุมศพของอาร์คิมิดีสซึ่งมีลูกทรงกลมจารึกอยู่ภายในแท่งทรงกระบอกเหนือหลุมศพ เนื่องจากอาร์คิมิดีสเป็นผู้พิสูจน์ว่า ทรงกลมมีปริมาตรและพื้นที่ผิวเป็น 2 ใน 3 ส่วนของทรงกระบอกที่บรรจุทรงกลมนั้นพอดี (รวมพื้นที่ของฐานทรงกระบอกทั้งสองข้าง) ซึ่งนับเป็นความสำเร็จครั้งยิ่งใหญ่ที่สุดของเขาในทางคณิตศาสตร์
ขณะที่ผลงานประดิษฐ์ของอาร์คิมิดีสเป็นที่รู้จักกันดี แต่งานเขียนทางด้านคณิตศาสตร์กลับไม่ค่อยเป็นที่แพร่หลายนัก นักคณิตศาสตร์จากอเล็กซานเดรียได้อ่านงานเขียนของเขาและนำไปอ้างอิง ทว่ามีการรวบรวมผลงานอย่างแท้จริงเป็นครั้งแรกในช่วง ค.ศ. 530 โดย ไอซิดอร์ แห่งมิเลตุส (Isidore of Miletus) ส่วนงานวิจารณ์งานเขียนของอาร์คิมิดีสซึ่งเขียนขึ้นโดย ยูโตเซียส แห่งอัสคาลอน (Eutocius of Ascalon) ในคริสต์ศตวรรษที่ 6 ช่วยเปิดเผยผลงานของเขาให้กว้างขวางยิ่งขึ้นเป็นครั้งแรก ต้นฉบับงานเขียนของอาร์คิมิดีสหลงเหลือรอดผ่านยุคกลางมาได้ไม่มากนัก แต่ก็เป็นแหล่งข้อมูลสำคัญที่มีอิทธิพลอย่างมากต่อแนวคิดของนักวิทยาศาสตร์ในยุคเรอเนสซองส์ ปี ค.ศ. 1906 มีการค้นพบต้นฉบับงานเขียนของอาร์คิมิดีสที่ไม่เคยมีใครเห็นมาก่อน ใน จารึกของอาร์คิมิดีส (Archimedes Palimpsest) ทำให้เราเห็นมุมมองใหม่ในกลวิธีที่เขาใช้ค้นหาผลลัพธ์ทางคณิตศาสตร์
ประวัติ
อาร์คิมิดีสเกิดราว 287 ปีก่อนคริสตกาล ที่เมืองซีรากูซา ซิซิลี ซึ่งเวลานั้นเป็นอาณานิคมปกครองตนเองของมังนาไกรกิอา วันเกิดของอาร์คิมิดีสนั้นอ้างอิงจากบันทึกของนักประวัติศาสตร์กรีกไบเซนไทน์ จอห์น เซตเซส ซึ่งระบุว่าอาร์คิมิดีสมีอายุ 75 ปี ใน The Sand Reckoner อาร์คิมิดีสบอกว่าบิดาของตนชื่อ ฟิเดียส เป็นนักดาราศาสตร์ ซึ่งไม่ปรากฏข้อมูลใด ๆ เลย พลูทาร์กเขียนเอาไว้ใน Parallel Lives ของเขาว่า อาร์คิมิดีสเป็นญาติกับกษัตริย์เฮียโรที่ 2 แห่งซีรากูซา เพื่อนของอาร์คิมิดีสคนหนึ่งชื่อ เฮราคลีดีส เป็นผู้เขียนหนังสือชีวประวัติของเขา แต่หนังสือเล่มนี้สูญหายไป ทำให้รายละเอียดชีวิตของเขายังเป็นที่คลุมเครือ ดังเช่น ไม่ทราบเลยว่าเขาแต่งงานหรือไม่ หรือมีบุตรหรือไม่ เมื่อยังเยาว์อาร์คิมิดีสอาจได้รับการศึกษาที่อเล็กซานเดรีย เมืองหนึ่งในอาณาจักรอียิปต์โบราณ ร่วมยุคสมัยกับโคนอนแห่งซามอส และเอราทอสเทนีสแห่งไซรีน เพราะเขาเคยอ้างถึงโคนอนแห่งซามอสว่าเป็นสหาย และในงานเขียนของเขา 2 ชิ้น ได้แก่ ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์ (The Method of Mechanical Theorems) และ (Cattle Problem) ก็ได้กล่าวถึงเอราทอสเทนีสด้วยa
อาร์คิมิดีสเสียชีวิตเมื่อปีที่ 212 ก่อนคริสตกาลระหว่างสงครามพิวนิกครั้งที่สอง เมื่อกองทัพโรมันภายใต้การนำทัพของนายพลมาร์กุส เกลาดิอุส มาร์แก็ลลุส เข้ายึดเมืองซีรากูซาได้หลังจากปิดล้อมอยู่ 2 ปี ตามบันทึกอันโด่งดังของพลูทาร์ก อาร์คิมิดีสกำลังขบคิดแผนภาพทางคณิตศาสตร์ชิ้นหนึ่งระหว่างที่นครถูกยึด ทหารโรมันคนหนึ่งสั่งให้เขาออกมาพบกับนายพลมาร์เซลลัส แต่เขาปฏิเสธโดยบอกว่าต้องแก้ปัญหาให้เสร็จเสียก่อน ทหารผู้นั้นจึงบันดาลโทสะและสังหารอาร์คิมิดีสด้วยดาบ พลูทาร์กยังบันทึกเรื่องเล่าอีกเรื่องหนึ่งว่าอาร์คิมิดีสถูกสังหารขณะพยายามจำนนต่อทหารโรมัน ตามเรื่องหลังนี้ อาร์คิมิดีสถือเครื่องมือทางคณิตศาสตร์ชิ้นหนึ่ง และถูกสังหารเนื่องจากทหารนึกว่ามันเป็นสิ่งมีค่า บันทึกเล่าว่านายพลมาร์เซลลัสโกรธมากเมื่อทราบเรื่องการเสียชีวิตของอาร์คิมิดีส ด้วยถือว่าเขาเป็นทรัพย์สมบัติอันเลอค่ายิ่งทางวิทยาศาสตร์ ทั้งยังออกคำสั่งไปแล้วว่าห้ามทำอันตรายแก่เขาโดยเด็ดขาด
คำพูดสุดท้ายของอาร์คิมิดีสตามที่เชื่อกันคือ "อย่ามากวนวงกลมของข้า" (กรีก: μὴ μου τοὺς κύκλους τάραττε, อังกฤษ: Do not disturb my circles) วงกลมที่พูดถึงนั้นคือภาพคณิตศาสตร์ที่เชื่อว่าเขากำลังศึกษาขบคิดอยู่ขณะที่ถูกทหารโรมันรบกวน คำพูดนี้มักกล่าวถึงในภาษาละตินว่า "Noli turbare circulos meos" แต่ไม่มีหลักฐานที่น่าเชื่อถือว่าอาร์คิมิดีสพูดประโยคนี้จริง ๆ และไม่ได้อยู่ในบันทึกของพลูทาร์กด้วย
หลุมศพของอาร์คิมิดีสบรรจุรูปปั้นมากมายที่แสดงถึงการพิสูจน์ทางคณิตศาสตร์ที่เขาชอบ เช่นทรงกลมที่อยู่ภายในทรงกระบอกที่มีความสูงและเส้นผ่านศูนย์กลางเท่ากัน อาร์คิมิดีสได้พิสูจน์ว่าปริมาตรและพื้นที่ผิวของทรงกลมมีขนาดเป็น 2 ใน 3 ของปริมาตรและพื้นที่ผิวของทรงกระบอก (รวมพื้นที่ฐาน) ในปีที่ 75 ก่อนคริสตกาล หลังจากอาร์คิมิดีสเสียชีวิตไปแล้ว 137 ปี กิแกโรได้เป็นขุนคลังแห่งซิซิลี เขาได้ยินเรื่องราวเกี่ยวกับหลุมศพของอาร์คิมิดีส แต่ไม่มีชาวเมืองคนใดบอกตำแหน่งที่ชัดเจนได้ ในเวลาต่อมาเขาพบหลุมศพบริเวณใกล้ประตูอกริเจจนทีนในเมืองซีรากูซาซึ่งถูกทิ้งร้างและคลุมไปด้วยสุมทุมพุ่มไม้ กิแกโรสั่งการให้ทำความสะอาด จึงสามารถมองเห็นรอยสลักและถ้อยคำจารึก หลุมศพแห่งหนึ่งที่ค้นพบในสนามหญ้าของโรงแรมหนึ่งในซีรากูซาเมื่อต้นคริสต์ทศวรรษ 1960 อ้างตัวว่าเป็นหลุมศพของอาร์คิมิดีส แต่ถึงปัจจุบันนี้ ก็ไม่มีใครทราบตำแหน่งที่แท้จริงแล้ว
บันทึกชีวประวัติของอาร์คิมิดีสฉบับมาตรฐานเขียนขึ้นโดยนักประวัติศาสตร์โรมันหลายคนหลังจากที่เขาเสียชีวิตไปแล้วเป็นเวลานาน บันทึกเรื่องการยึดเมืองซีรากูซาใน Universal History ของพอลิเบียส เขียนขึ้นประมาณ 70 ปีหลังการเสียชีวิตของอาร์คิมิดีส และต่อมาถูกใช้เป็นแหล่งข้อมูลของพลูทาร์กและลิวี เนื้อหาในบันทึกนี้ให้ข้อมูลเกี่ยวกับชีวิตของอาร์คิมิดีสน้อยมาก ส่วนใหญ่จะกล่าวถึงการใช้เครื่องจักรยนต์ในสงคราม ซึ่งอาร์คิมิดีสสร้างขึ้นเพื่อใช้ป้องกันเมือง
การค้นพบและสิ่งประดิษฐ์
มงกุฎทองคำ
เรื่องเล่าที่รู้จักกันแพร่หลายที่สุดเกี่ยวกับอาร์คิมิดีส คือการที่เขาค้นพบกลวิธีในการหาปริมาตรของวัตถุซึ่งมีรูปร่างแปลก ๆ ตามบันทึกของวิทรูเวียส เล่าว่าวัดแห่งหนึ่งสร้างมงกุฎถวายแด่พระเจ้าเฮียโรที่ 2 โดยพระองค์ทรงจัดหาทองคำบริสุทธิ์ให้ อาร์คิมิดีสถูกร้องขอให้ช่วยตรวจสอบว่ามีการฉ้อโกงโดยผสมเงินลงไปด้วยหรือไม่ การตรวจสอบจะต้องไม่ทำให้มงกุฎเสียหาย ดังนั้นเขาจะหลอมมันให้เป็นรูปทรงปกติเพื่อคำนวณหาค่าความหนาแน่นไม่ได้ วันหนึ่งขณะอาบน้ำ เขาสังเกตว่าระดับน้ำในอ่างเพิ่มสูงขึ้นขณะเขาก้าวลงไป จึงคิดได้ว่าวิธีการนี้สามารถใช้ในการหาปริมาตรของมงกุฎได้ เพราะตามปกติแล้ว น้ำไม่สามารถถูกบีบอัดได้ ดังนั้นมงกุฎที่จุ่มลงไปในน้ำย่อมต้องแทนที่ด้วยปริมาตรของน้ำที่เท่ากับปริมาตรของมงกุฎนั่นเอง เมื่อนำปริมาตรมาหารด้วยมวลของมงกุฎ ก็สามารถหาค่าความหนาแน่นของมงกุฎได้ ถ้ามีการผสมโลหะราคาถูกอื่นเข้าไป ค่าความหนาแน่นนี้จะต่ำกว่าค่าความหนาแน่นของทองคำ อาร์คิมิดีสวิ่งออกไปยังท้องถนนทั้งที่ยังแก้ผ้า ด้วยความตื่นเต้นจากการค้นพบครั้งนี้จนลืมแต่งตัว แล้วร้องตะโกนว่า "ยูเรก้า!" (กรีก: εὕρηκα! แปลว่า ฉันพบแล้ว) การทดสอบจัดทำขึ้นอย่างประสบผลสำเร็จ และพิสูจน์ได้ว่ามีการผสมเงินเข้าไปในมงกุฎจริง ๆ
เรื่องของมงกุฏทองคำไม่ปรากฏอยู่ในผลงานของอาร์คิมิดีสที่รู้จักกัน ยิ่งกว่านั้น กลวิธีที่บรรยายเอาไว้ยังทำให้เกิดความสงสัยเกี่ยวกับความแม่นยำอย่างยิ่งยวดในการตรวจวัดค่าของการแทนที่ของน้ำ บางทีอาร์คิมิดีสอาจจะค้นหาวิธีการประยุกต์หลักการที่รู้จักกันในสถิตยศาสตร์ของไหลว่าด้วยเรื่องหลักการของอาร์คิมิดีส ซึ่งเขาบรรยายไว้ในตำราเรื่อง On Floating Bodies หลักการนี้บอกว่า วัตถุที่จุ่มลงในของไหลจะมีแรงลอยตัวเท่ากับน้ำหนักของของไหลที่มันเข้าไปแทนที่ ด้วยหลักการนี้ จึงเป็นไปได้ที่จะเปรียบเทียบความหนาแน่นของมงกุฎทองคำกับทองคำแท่ง โดยการถ่วงมงกุฎทองคำกับทองคำที่ใช้อ้างอิง จากนั้นจุ่มอุปกรณ์ทั้งหมดลงในน้ำ ถ้ามงกุฎมีความหนาแน่นน้อยกว่าทองคำแท่ง มันจะแทนที่น้ำด้วยปริมาตรที่มากกว่า ทำให้มีแรงลอยตัวมากกว่าทองคำอ้างอิง แรงลอยตัวที่แตกต่างกันจะทำให้เครื่องถ่วงไม่สมดุล กาลิเลโอเห็นว่าวิธีการนี้ "อาจเป็นวิธีการเดียวกันกับที่อาร์คิมิดีสใช้ เนื่องจากมีความแม่นยำสูง จึงอาจเป็นวิธีทดลองที่อาร์คิมิดีสค้นพบด้วยตนเอง"
เกลียวอาร์คิมิดีส
งานส่วนใหญ่ของอาร์คิมิดีสทางด้านวิศวกรรมเกิดขึ้นเนื่องจากต้องการตอบสนองต่อบ้านเกิดของเขา คือเมืองซีรากูซา นักเขียนกรีกชื่อ อะธีเนอุส แห่งเนาเครติส บรรยายถึงการที่พระเจ้าเฮียโรที่ 2 ว่าจ้างให้อาร์คิมิดีสออกแบบเรือขนาดยักษ์ ชื่อ ไซราคูเซีย (Syracusia) เพื่อนำไปใช้ในการเดินทางอย่างหรูหรา สามารถบรรทุกเสบียงมาก ๆ และใช้เป็นเรือรบได้ ว่ากันว่าเรือไซราคูเซียนี้เป็นเรือขนาดใหญ่ที่สุดที่เคยสร้างในสมัยโบราณ ตามบันทึกของอะธีเนอุส เรือนี้สามารถบรรทุกคน 600 คน รวมไปถึงเครื่องตกแต่งทองคำ มีโรงฝึกและวัดอุทิศแด่เทพีอโฟรไดท์ รวมถึงสิ่งอำนวยความสะดวกอื่น ๆ เรือที่ใหญ่ขนาดนี้จะกินน้ำผ่านตัวเรือจำนวนมาก จึงมีการพัฒนาเกลียวอาร์คิมิดีสเพื่อใช้ในการขนถ่ายน้ำออกจากท้องเรือ เครื่องจักรของอาร์คิมิดีสเป็นอุปกรณ์ที่มีใบพัดทรงเกลียวหมุนอยู่ภายในทรงกระบอก ใช้มือหมุน และสามารถใช้ขนย้ายน้ำจากที่ใด ๆ ไปยังคลองชลประทานก็ได้ ทุกวันนี้เรายังใช้เกลียวอาร์คิมิดีสอยู่ในการสูบน้ำหรือของแข็งที่เป็นเมล็ด เช่นถ่านหินหรือเมล็ดข้าว เป็นต้น เกลียวอาร์คิมิดีสที่บรรยายในบันทึกของวิทรูเวียสในสมัยโรมันอาจเป็นการพัฒนาเครื่องสูบน้ำแบบเกลียวซึ่งใช้ในการจ่ายน้ำให้แก่สวนลอยแห่งบาบิโลน เรือไอน้ำลำแรกของโลกที่ใช้ใบจักรแบบเกลียว คือ SS Archimedes ออกเรือครั้งแรกในปี ค.ศ. 1839 และตั้งชื่อเพื่อเป็นเกียรติแก่อาร์คิมิดีสและผลงานคิดค้นใบจักรเกลียว
กรงเล็บอาร์คิมิดีส
กรงเล็บอาร์คิมิดีส คืออาวุธชนิดหนึ่งที่เขากล่าวไว้ว่าออกแบบมาเพื่อใช้ป้องกันเมืองซีรากูซา บ้างก็รู้จักในชื่อ "เครื่องเขย่าเรือ" ประกอบด้วยแขนกลลักษณะคล้ายเครนโดยมีขอโลหะขนาดใหญ่หิ้วเอาไว้ด้านบน เมื่อปล่อยกรงเล็บนี้ใส่เรือที่มาโจมตี แขนกลจะเหวี่ยงตัวกลับขึ้นด้านบน ยกเรือขึ้นจากน้ำและบางทีก็ทำให้เรือจม มีการทดลองยุคใหม่เพื่อทดสอบความเป็นไปได้ของกรงเล็บนี้ และในสารคดีทางโทรทัศน์ปี 2005 ชื่อเรื่องว่า Superweapons of the Ancient World ได้สร้างกรงเล็บเช่นนี้ขึ้นมา ได้ข้อสรุปว่ามันเป็นเครื่องมือที่ใช้ได้ผลจริง ๆ
รังสีความร้อนของอาร์คิมิดีส
เมื่อคริสต์ศตวรรษที่ 2 ลูเชียนเขียนว่าระหว่างการล้อมซีราคิวส์ (214-212 ปีก่อนคริสตกาล) อาร์คิมิดีสทำลายเรือฝ่ายศัตรูด้วยไฟ หลายศตวรรษต่อมา แอนธีมิอุสแห่งทรอลเลส เอ่ยถึงเลนส์รวมแสงว่าเป็นอาวุธของอาร์คิมิดีส อุปกรณ์นี้บางครั้งก็เรียกว่า "รังสีความร้อนของอาร์คิมิดีส" ใช้ในการรวมจุดโฟกัสของแสงอาทิตย์ส่องไปยังเรือที่รุกราน ทำให้เรือเหล่านั้นติดไฟ
อาวุธดังกล่าวนี้เป็นหัวข้อถกเถียงกันเกี่ยวกับผู้คิดค้นมาเป็นเวลานานจนถึงยุคเรอเนสซองส์ เรอเน เดส์คาร์ตส์เห็นว่าเป็นเรื่องหลอก ขณะที่นักวิจัยยุคใหม่หลายคนพยายามสร้างมันขึ้นมาใหม่โดยใช้เครื่องมือเพียงเท่าที่มีอยู่ในยุคของอาร์คิมิดีส ความเห็นบางส่วนเห็นว่า แผงโล่ทองแดงหรือโล่สำริดขัดมันปลาบจำนวนมากสามารถใช้แทนกระจกและโฟกัสแสงอาทิตย์ส่องไปบนเรือ ซึ่งอาจใช้หลักการของจานสะท้อนแบบพาราโบลาในลักษณะที่คล้ายคลึงกับเตารังสีแสงอาทิตย์
เมื่อปี ค.ศ. 1973 มีการทดสอบรังสีความร้อนของอาร์คิมิดีสโดยนักวิทยาศาสตร์ชาวกรีกชื่อ โยแอนนิส ซัคคัส ทำการทดลองที่ฐานทัพเรือสการามากัส (skaramagas) แถบนอกเมืองเอเธนส์ ใช้กระจก 70 ชุด แต่ละชุดมีขนาดราว 5x3 ฟุต เคลือบผิวด้วยทองแดง แผงกระจกพุ่งเป้าไปที่แผ่นไม้บนเรือโรมันที่อยู่ห่างออกไปประมาณ 160 ฟุต เมื่อปรับโฟกัสกระจกให้แม่นยำ เรือก็ลุกเป็นไฟในเวลาเพียงไม่กี่วินาที เรือไม้นั้นทาผิวด้วยยางไม้ ซึ่งอาจช่วยให้ติดไฟได้ง่ายขึ้น
เดือนตุลาคม ค.ศ. 2005 นักศึกษากลุ่มหนึ่งจากสถาบันเทคโนโลยีแมสซาชูเซตส์ ทำการทดลองด้วยกระจกขนาด 1 ฟุต 127 แผ่น มุ่งเป้าไปที่เรือไม้ที่อยู่ห่างออกไป 100 ฟุต เรือสามารถติดไฟได้ แต่ก็เมื่อท้องฟ้าปราศจากเมฆและเรือนั้นอยู่นิ่ง ๆ ประมาณ 10 นาที จึงสรุปได้ว่าเครื่องมือนี้เป็นอาวุธที่เป็นไปได้ภายใต้เงื่อนไข กลุ่มนักศึกษาเอ็มไอทีทำการทดลองซ้ำในรายการโทรทัศน์ MythBusters โดยใช้เรือตกปลาทำจากไม้ในซานฟรานซิสโกเป็นเป้าหมาย เรือนั้นไหม้เกรียมเป็นถ่าน มีเปลวไฟจำนวนเล็กน้อย การที่ไม้จะลุกเป็นไฟจะต้องมีอุณหภูมิสูงถึงจุดติดไฟที่ประมาณ 300 °C (570 °F)
เมื่อรายการ MythBusters ออกอากาศผลการทดลองที่ซานฟรานซิสโกเมื่อเดือนมกราคม ค.ศ. 2006 ผลสรุปเรื่องคำกล่าวอ้างนั้นตกเป็น "ล้มเหลว" เนื่องจากระยะเวลาที่ต้องใช้กับเงื่อนไขทางสภาวะอากาศที่จำเป็นต่อการลุกไหม้ รายการยังชี้ประเด็นว่าเมืองซีรากูซาตั้งหันหน้าสู่ทะเลทางตะวันออก ดังนั้นกองเรือโรมันจะต้องเข้าโจมตีระหว่างช่วงเช้าเพื่อจะสามารถใช้กระจกรวมแสงได้ผลดีที่สุด MythBusters ยังชี้อีกว่าในระยะที่ใกล้ขนาดนั้น การใช้อาวุธแบบดั้งเดิม เช่นการยิงธนูไฟหรือใช้เครื่องยิงหิน ยังจะทำได้ง่ายกว่าการจุดไฟแบบนี้เสียอีก
เดือนธันวาคม ค.ศ. 2010 รายการ MythBusters ภาคพิเศษโดยบารัค โอบามา ในตอนที่ชื่อว่า President's Challenge ได้ทำการทดลองรังสีความร้อนนี้ซ้ำอีกครั้ง มีการทดลองหลายครั้ง รวมถึงการทดสอบขนาดใหญ่โดยใช้เด็กนักเรียนถึง 500 คนช่วยกันส่องกระจกไปยังเรือโรมันที่ระยะห่าง 400 ฟุต การทดลองทุกครั้งไม่สามารถทำอุณหภูมิได้ถึง 210 °C เพื่อให้ติดไฟได้เลย ผลลัพธ์จึงสรุปว่า "ล้มเหลว" อีกครั้ง ทางรายการสรุปว่า ผลกระทบประการอื่นจากการใช้กระจกอาจทำให้ทหารบนกองเรือตาพร่าลาย มองไม่เห็น สับสนมึนงง หรือช่วยหันเหความสนใจมากกว่า
การค้นพบและสิ่งประดิษฐ์อื่น ๆ
แม้อาร์คิมิดีสมิใช่ผู้ค้นพบคาน แต่เขาเป็นผู้อธิบายถึงหลักการของมันในงานเขียนของเขาเรื่อง On the Equilibrium of Planes มีบันทึกก่อนหน้านี้ที่เกี่ยวกับคานพบในสำนักศึกษาเพริพาเททิก (Peripatetic school) ของลูกศิษย์ของอริสโตเติล และมีบางส่วนปรากฏในงานของด้วย ตามบันทึกของพัพพัสแห่งอเล็กซานเดรีย งานของอาร์คิมิดีสเกี่ยวกับคานเป็นที่มาของประโยคอันโด่งดังว่า "หาที่ยืนให้ฉันสิ แล้วฉันจะเคลื่อนโลกให้" (กรีก: δῶς μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω) พลูทาร์กเคยบรรยายไว้ว่าอาร์คิมิดีสออกแบบระบบชักรอกอย่างไร ซึ่งทำให้กลาสีสามารถใช้หลักการของคานในการยกวัตถุที่หนักเกินจะยกไหว อาร์คิมิดีสยังได้รับยกย่องในฐานะผู้พัฒนาให้มีกำลังและความแม่นยำมากขึ้น รวมถึงการประดิษฐ์มาตรวัดออดอมิเตอร์ระหว่างสงครามพิวนิกครั้งที่หนึ่ง ออดอมิเตอร์นี้มีการบรรยายไว้ว่ามีลักษณะเหมือนเกวียนที่มีกลไกฟันเฟืองคอยทิ้งลูกบอลลงในภาชนะบรรจุเมื่อเดินทางไปได้ทุกระยะหนึ่งไมล์
กิแกโร (106-43 ปีก่อนคริสตกาล) กล่าวถึงอาร์คิมิดีสสั้น ๆ ในงานเขียนประเภทบทสนทนาของเขาเรื่อง De re publica ซึ่งเป็นบทสนทนาสมมุติที่เกิดขึ้นในปี 129 ก่อนคริสตกาล หลังจากการปิดล้อมซีรากูซาเมื่อปีที่ 212 ก่อนคริสตกาลแล้ว เล่ากันว่านายพลมาร์คัส เคลาดิอัส มาร์เซลลัส นำเอาเครื่องกลไก 2 ชิ้นที่ใช้ช่วยในการศึกษาดาราศาสตร์กลับไปยังโรม เครื่องกลไกนี้ช่วยแสดงการเคลื่อนที่ของดวงอาทิตย์ ดวงจันทร์ และดาวเคราะห์ 5 ดวง กิแกโรระบุถึงเครื่องกลไกที่คล้ายคลึงกันนี้ว่าออกแบบโดย และ ในงานเขียนนั้นกล่าวว่า มาร์เซลลัสเก็บเครื่องมือชิ้นหนึ่งเอาไว้เป็นของสะสมส่วนตัวจากซีรากูซา ส่วนอีกชิ้นหนึ่งส่งไปยังวิหารแห่งความบริสุทธิ์ในกรุงโรม ตามงานเขียนของกิแกโร ไกอัส ซุพิซิอุส กัลลัส ได้สาธิตเครื่องกลไกของมาร์เซลลัสให้แก่ ลูเชียส ฟูเรียส ฟิลุส ซึ่งบรรยายเอาไว้ว่า
Hanc sphaeram Gallus cum moveret, fiebat ut soli luna totidem conversionibus in aere illo quot diebus in ipso caelo succederet, ex quo et in caelo sphaera solis fieret eadem illa defectio, et incideret luna tum in eam metam quae esset umbra terrae, cum sol e regione. — เมื่อกัลลัสเคลื่อนลูกโลก ดูเหมือนดวงจันทร์บนสิ่งประดิษฐ์สำริดนั้นจะเคลื่อนตามดวงอาทิตย์ไปหลายรอบเหมือนอย่างที่เกิดขึ้นบนท้องฟ้า ทั้งยังทำให้เกิดคราสบนทรงกลมดวงอาทิตย์เหมือนกับบนท้องฟ้าด้วย และดวงจันทร์ก็เคลื่อนมายังตำแหน่งที่ทำให้เกิดเงาบนโลก เมื่อดวงอาทิตย์มาอยู่ในแนวเดียวกัน
นั่นคือคำบรรยายถึงท้องฟ้าจำลองหรือแบบจำลองวงโคจรดาวเคราะห์นั่นเอง พัพพัสแห่งอเล็กซานเดรียระบุว่า อาร์คิมิดีสได้เขียนต้นฉบับลายมือชุดหนึ่ง (ปัจจุบันสูญหายไปแล้ว) เกี่ยวกับการก่อสร้างกลไกเหล่านี้เอาไว้ งานวิจัยยุคใหม่ในสาขานี้ได้มุ่งความสนใจไปที่กลไกอันติคือเธรา ซึ่งเป็นเครื่องมืออีกชนิดหนึ่งจากยุคคลาสสิกที่อาจจะออกแบบขึ้นมาเพื่อวัตถุประสงค์เดียวกัน กลไกการสร้างประเภทนี้จำเป็นต้องใช้ความรู้อันซับซ้อนลึกซึ้งเกี่ยวกับ ซึ่งครั้งหนึ่งเคยคิดกันว่าอยู่พ้นจากเทคโนโลยีที่เป็นไปได้ในยุคโบราณ แต่การค้นพบกลไกอันติคือเธราในปี ค.ศ. 1902 ช่วยยืนยันว่าเครื่องมือประเภทนี้เป็นที่รู้จักกันตั้งแต่ยุคกรีกโบราณแล้ว
งานด้านคณิตศาสตร์
อาร์คิมิดีสมักได้รับยกย่องในฐานะผู้ออกแบบสิ่งประดิษฐ์กลไก แต่เขาก็มีส่วนร่วมในวิทยาการด้านคณิตศาสตร์ไม่น้อย พลูทาร์กเขียนไว้ว่า : "เขาทุ่มเทความรักและความทะเยอทะยานทั้งมวลไว้กับการเสี่ยงโชคอันบริสุทธิ์ ซึ่งปราศจากความจำเป็นแห่งมารยาใด ๆ ในชีวิต"
อาร์คิมิดีสสามารถใช้แนวคิดกณิกนันต์ในวิธีที่คล้ายคลึงกับแคลคูลัสเชิงปริพันธ์ของยุคใหม่ ด้วยการพิสูจน์แย้ง เขาสามารถหาคำตอบของปัญหาที่มีระดับความแม่นยำสูงมาก ๆ ได้โดยกำหนดขอบเขตที่คำตอบนั้นตั้งอยู่ เทคนิคนี้รู้จักกันในชื่อ ระเบียบวิธีเกษียณ (Method of exhaustion) ซึ่งเขานำมาใช้ในการหาค่าประมาณของ π (พาย) วิธีการคือวาดภาพหลายเหลี่ยมขนาดใหญ่กว่าอยู่ข้างนอกวงกลม และรูปหลายเหลี่ยมขนาดเล็กกว่าอยู่ข้างในวงกลม ยิ่งจำนวนด้านของรูปหลายเหลี่ยมเพิ่มขึ้น มันก็จะใกล้เคียงกับขอบของวงกลมมากยิ่งขึ้น เมื่อรูปหลายเหลี่ยมมีจำนวนด้านถึง 96 ด้าน เขาคำนวณความยาวของแต่ละด้านรวมกันและแสดงถึงค่าของ π ที่อยู่ระหว่าง 317 (ประมาณ 3.1429) กับ 31071 (ประมาณ 3.1408) เทียบกับค่าที่แท้จริงของ π ที่ประมาณ 3.1416 เขายังพิสูจน์ด้วยว่าพื้นที่ของวงกลมนั้นเท่ากับ π คูณกับค่ากำลังสองของรัศมีของวงกลม ในงานเขียนเรื่อง On the Sphere and Cylinder อาร์คิมิดีสได้วางหลักเกณฑ์ของของจำนวนจริง ว่าค่ากนิกนันต์ใด ๆ เมื่อนำมาบวกเข้ากับตัวเองเป็นจำนวนครั้งมากพอ จะมากกว่าค่าอนันต์ของค่านั้น
ในงานเขียน Measurement of a Circle อาร์คิมิดีสให้ค่ารากที่สองของ 3 ไว้ว่าอยู่ระหว่าง 265153 (ประมาณ 1.7320261) กับ 1351780 (ประมาณ 1.7320512) โดยค่าที่แท้จริงคือประมาณ 1.7320508 ซึ่งเป็นค่าประมาณการที่ใกล้เคียงมาก เขาบอกค่านี้ออกมาโดยไม่ได้ให้คำอธิบายว่าใช้ระเบียบวิธีใดในการคิด วิธีการทำงานของอาร์คิมิดีสเช่นนี้ทำให้ ระบุว่าเขากำลัง "ปกปิดวิธีการในการหาคำตอบ ราวกับว่าไม่ต้องการให้คนรุ่นหลังได้ล่วงรู้ แต่กลับขู่เข็ญให้ยอมรับผลลัพธ์นั้นแต่โดยดี"
ในงานเขียน The Quadrature of the Parabola อาร์คิมิดีสพิสูจน์ว่า พื้นที่ภายใต้เขตล้อมของพาราโบลากับเส้นตรงหนึ่งเส้น มีค่าเท่ากับ 43 เท่าของพื้นที่สามเหลี่ยมในเขตเดียวกันนั้น ดังแสดงในรูปทางขวานี้ เขาอธิบายผลลัพธ์ของปัญหานี้ด้วยอนุกรมเรขาคณิตอนันต์ซึ่งมีอัตราส่วนร่วม 14:
พจน์แรกของอนุกรมนี้คือพื้นที่ของสามเหลี่ยม พจน์ที่สองเป็นผลรวมของพื้นที่ของสามเหลี่ยม 2 ชิ้นที่มีฐานเท่ากับด้านประกอบที่เล็กกว่า และเป็นเช่นนี้ไปเรื่อย ๆ การพิสูจน์นี้ใช้การแปรค่าของอนุกรมอนันต์ที่ได้ผลรวมเข้าใกล้ 13
ในงานเขียน The Sand Reckoner อาร์คิมิดีสทำการคำนวณจำนวนเม็ดทรายที่เอกภพสามารถรองรับได้ การทำเช่นนั้น เขาได้ท้าทายข้อสังเกตว่าจำนวนของเม็ดทรายนั้นมากจนเกินกว่าจะนับได้ เขาเขียนว่า : "มีบางคน เช่นพระเจ้าเกโล (พระเจ้าเกโลที่ 2 โอรสของพระเจ้าเฮียโรที่ 2 แห่งซีรากูซา) ซึ่งคิดว่าจำนวนของเม็ดทรายนั้นมากมายจนเป็นอนันต์ และในความหมายของทรายนั้น ข้ามิได้หมายถึงที่มีอยู่ในซีรากูซาหรือส่วนที่เหลือของซิซิลี แต่รวมถึงส่วนที่พบในท้องถิ่นทุกหนแห่งไม่ว่ามีคนอยู่หรือไม่" ในการแก้ปัญหานี้ อาร์คิมิดีสได้ประดิษฐ์ระบบในการนับขึ้นโดยอ้างอิงจาก มีเรียด คำนี้มาจากภาษากรีกว่า murias หมายถึงจำนวน 10,000 เขาเสนอระบบจำนวนแบบหนึ่งโดยใช้การคูณมีเรียดกับมีเรียด (100 ล้าน) และสรุปว่าจำนวนของเม็ดทรายที่ต้องใช้ในการเติมเอกภพทั้งหมดให้เต็ม เท่ากับ 8 วิจินทิลเลียน หรือ 8×1063
ตำรา
งานเขียนของอาร์คิมิดีสเขียนไว้ใน (Doric Greek) ซึ่งเป็นภาษาซีรากูซาโบราณ งานเขียนส่วนมากไม่สามารถรอดมาถึงปัจจุบันเหมือนอย่างงานของยูคลิด ตำรา 7 เล่มของเขาเป็นที่รู้จักก็ด้วยการถูกนักเขียนคนอื่น ๆ กล่าวอ้างถึงเท่านั้น พัพพัสแห่งอเล็กซานเดรียพูดถึง On Sphere-Making และงานอื่น ๆ เกี่ยวกับรูปหลายเหลี่ยม ขณะที่ธีออนแห่งอเล็กซานเดรียอ้างถึงใจความสำคัญหนึ่งเกี่ยวกับจากงานเขียนชื่อ Catoptricab ตลอดช่วงชีวิตของอาร์คิมิดีส เขาทำให้งานของตนเป็นที่รู้จักผ่านการสนทนาอภิปรายกับนักคณิตศาสตร์คนอื่น ๆ ในอเล็กซานเดรีย ปี ค.ศ. 530 สถาปนิกชาวไบแซนไทน์คนหนึ่งชื่อ อิซิดอร์แห่งมิเลตุส ได้รวบรวมงานเขียนของอาร์คิมิดีสเข้าด้วยกัน และมีการวิจารณ์ผลงานของอาร์คิมิดีสจากยูโตเซียสแห่งอัสคาลอนในคริสต์ศตวรรษที่ 6 ซึ่งทำให้ผลงานของเขาเป็นที่รู้จักแพร่หลาย มีการแปลงานเขียนของอาร์คิมิดีสไปเป็นภาษาอารบิกโดย Thābit ibn Qurra (ค.ศ. 836-901) และภาษาละตินโดย Gerard แห่งครีโมนา (ค.ศ. 1114-1187) ระหว่างยุคเรอเนสซองส์มีการตีพิมพ์ Editio Princeps (เอดิชั่นแรก) ในกรุงเบเซิลเมื่อปี ค.ศ. 1544 โดย โจฮันน์ แฮร์เวเกน โดยแสดงงานเขียนของอาร์คิมิดีสทั้งในภาษากรีกและละติน ประมาณปี ค.ศ. 1586 กาลิเลโอ กาลิเลอี คิดค้นสมดุลของสถิตยศาสตร์ของไหลเพื่อใช้ในการชั่งน้ำหนักโลหะในอากาศและในน้ำ โดยเห็นชัดว่าได้รับแรงบันดาลใจจากงานของอาร์คิมิดีส
ผลงานที่รอดมา
- ว่าด้วยดุลยภาพของระนาบ (On the Equilibrium of Planes) หรือ จุดศูนย์ถ่วงของระนาบ (Gravity of Planes)
- เขียนไว้สองเล่ม เล่มแรกมี 15 บทกับสัจพจน์ 7 ข้อ ส่วนเล่มที่ 2 มี 10 บท งานเขียนชิ้นนี้ อาร์คิมิดีสกล่าวถึงกฎของคาน โดยระบุว่า "น้ำหนักบนคานจะอยู่ในสมดุลที่ระยะห่างจากจุดหมุนเป็นอัตราส่วนผกผันกับน้ำหนัก"
- อาร์คิมิดีสใช้หลักการนี้ในการหาทางคำนวณพื้นที่และจุดศูนย์กลางมวลของวัตถุรูปทรงต่าง ๆ กัน ซึ่งรวมถึงทรงสามเหลี่ยม สี่เหลี่ยมด้านขนาน และพาราโบลา
- ว่าด้วยการวัดวงกลม (On Measurement of the Circle)
- เป็นงานสั้น ๆ ประกอบด้วย 3 บท เขียนในรูปแบบการสนทนากับโดซิเธอุสแห่งเพลูเซียม ผู้เป็นศิษย์ของโคนอนแห่งซามอส ในบทที่ 2 อาร์คิมิดีสแสดงให้เห็นว่า ค่า π (pi) มีค่ามากกว่า 22371 แต่น้อยกว่า 227 ตัวเลขหลังนี้เป็นตัวเลขที่ถูกนำมาใช้เป็นค่าประมาณการของ π มาตลอดยุคกลาง และยังคงเป็นที่นิยมใช้กันอยู่ในปัจจุบันเมื่อต้องการคำนวณอย่างคร่าว ๆ
- ว่าด้วยเส้นเกลียว (On Spirals)
- งานชิ้นนี้มี 28 บท และยังคงกล่าวถึงโดซิธีอุส ตำรานี้กล่าวถึงสิ่งที่ปัจจุบันเรียกชื่อว่า วงก้นหอยอาร์คิมิดีส (Archimedean spiral) นั่นคือ โลคัสของจุดที่เคลื่อนที่ (ด้วยความเร็วคงที่) ไปตามแนวเส้นตรง (ที่กำลังหมุนรอบตัวเองอยู่ด้วยคงที่) ณ จุดใด ๆ ซึ่งแสดงเป็นค่าคู่อันดับเชิงมุมได้ว่า (r, θ) สามารถแสดงเป็นสมการได้ดังนี้
- โดย a และ b เป็นจำนวนจริง นี่เป็นตัวอย่างยุคแรก ๆ ของเส้นโค้งทางกล (เส้นโค้งที่เกิดจากจุดเคลื่อนที่) ในความเห็นของนักคณิตศาสตร์ชาวกรีก
- ว่าด้วยทรงกลมและทรงกระบอก (On the Sphere and the Cylinder)
- เขียนไว้สองเล่ม โดยเป็นการเขียนถึงโดซิธีอุส อาร์คิมิดีสเขียนถึงผลงานซึ่งเขาภาคภูมิใจมากที่สุด นั่นคือความสัมพันธ์ระหว่างทรงกลมกับทรงกระบอกที่มีความสูงและเส้นผ่านศูนย์กลางเท่ากัน ปริมาตรของทรงกลมคือ 43πr3 ส่วนปริมาตรของทรงกระบอกเท่ากับ 2πr3 พื้นที่ผิวของทรงกลมคือ 4πr2 ส่วนพื้นที่ผิวของทรงกระบอกเท่ากับ 6πr2 (รวมพื้นที่ฐานทั้งสองด้าน) โดยที่ r คือรัศมีของทรงกลมและทรงกระบอกนั้น ทรงกลมจะมีปริมาณเป็น 2/3 เท่าของปริมาตรทรงกระบอก ในขณะเดียวกันก็มีพื้นที่ผิวเป็น 2/3 เท่าของพื้นที่ผิวทรงกระบอกด้วย มีรูปปั้นทรงกลมและทรงกระบอกติดตั้งอยู่ในหลุมศพของอาร์คิมิดีสตามคำขอของเขาเอง
- ว่าด้วยทรงกรวย และทรงกลม (On Connoids and Spheroids)
- เป็นงานประกอบด้วย 32 บทเขียนถึงโดซิธีอุส อาร์คิมิดีสคำนวณพื้นที่และปริมาตรของเสี้ยวทรงตัน ที่เกิดจากการหมุนภาคตัดกรวย (วงกลม วงรี พาราโบลา หรือ ไฮเพอร์โบลา) รอบแกนของตัวเอง
- ว่าด้วยเทหวัตถุลอย (On Floating Bodies)
- ในช่วงแรกของตำรานี้ อาร์คิมิดีสกล่าวถึงกฎสมดุลของของไหล (หรือสถิตยศาสตร์ของไหล) และพิสูจน์ว่าน้ำจะคงรูปทรงเป็นทรงกลมรอบ ๆ จุดศูนย์กลางของแรงโน้มถ่วง นี่อาจเป็นความพยายามอธิบายทฤษฎีของนักดาราศาสตร์ชาวกรีกร่วมสมัยกับเขา เช่น เอราทอสเทนีส ที่บอกว่าโลกมีรูปร่างกลม ของไหลในความหมายของอาร์คิมิดีสนั้นไม่ได้มีแรงโน้มถ่วงในตัวเอง เนื่องจากเขาตั้งสมมุติฐานว่ามีจุดอยู่จุดหนึ่งซึ่งทุกสิ่งตกลงไปหาเพื่อทำให้เกิดรูปทรงแบบทรงกลม
- ในช่วงที่สอง เขาคำนวณตำแหน่งสมดุลของภาคตัดของรูปทรงพาราโบลา ซึ่งดูเหมือนเป็นภาพอุดมคติของรูปทรงของท้องเรือ ภาคตัดของเขาบางส่วนจะมีฐานอยู่ใต้น้ำ และยอดอยู่เหนือน้ำ ในลักษณะเดียวกันกับการลอยตัวของภูเขาน้ำแข็ง หลักการของอาร์คิมิดีสว่าด้วยการลอยตัว ถูกระบุเอาไว้ในงานเขียนชิ้นนี้ โดยระบุว่า
วัตถุใด ๆ ที่จมอยู่ในของไหลไม่ว่าทั้งหมดหรือบางส่วน จะประสบกับแรงต้านที่เท่ากันกับน้ำหนักของของไหลที่ถูกแทนที่ แต่เป็นไปในทิศทางตรงกันข้าม
- เสี้ยวของพาราโบลา (The Quadrature of the Parabola)
- เป็นงานเขียน 24 บทเขียนถึงโดซิธีอุส อาร์คิมิดีสใช้ระเบียบวิธี 2 ชนิดพิสูจน์ว่า พื้นที่ของส่วนใด ๆ ของพาราโบลากับเส้นตรง จะเท่ากับ 4/3 ของพื้นที่สามเหลี่ยมที่มีเส้นฐานและความสูงเท่ากับส่วนเสี้ยวนั้น เขาสามารถพิสูจน์ได้สำเร็จโดยการคำนวณค่าอนุกรมเรขาคณิตที่มีผลรวมถึงอนันต์ด้วยอัตราส่วน 14
- (O) stomachion
- เป็นงานปริศนาชิ้นส่วน คล้ายคลึงกับแทนแกรม มีตำราที่เอ่ยถึงงานลักษณะนี้ที่สมบูรณ์ยิ่งกว่า ในสมุดบันทึกของอาร์คิมิดีส (Archimedes palimpsest) อาร์คิมิดีสคำนวณพื้นที่ของชิ้นส่วน 14 ชิ้นที่สามารถประกอบกันเป็นรูปสี่เหลี่ยมจัตุรัส งานวิจัยของ ดร.เรวีล เนตซ์ แห่งมหาวิทยาลัยสแตนฟอร์ดที่เผยแพร่ในปี ค.ศ. 2003 โต้แย้งว่า อาร์คิมิดีสพยายามจะบ่งบอกจำนวนวิธีที่ชิ้นส่วนเหล่านี้สามารถรวมกันเป็นรูปทรงสี่เหลี่ยมจัตุรัสได้ ดร.เนตซ์ คำนวณว่าการประกอบชิ้นส่วนเหล่านี้เป็นสี่เหลี่ยมจัตุรัสสามารถทำได้ 17,152 วิธี หากไม่นับการหมุนรูปและการสะท้อนรูปแล้วจะได้จำนวนวิธีจัดเรียงทั้งสิ้น 536 วิธี ปริศนานี้เป็นตัวอย่างการแก้ปัญหาในยุคเริ่มแรกของคณิตศาสตร์เชิงการจัด
- ต้นกำเนิดของชื่อดั้งเดิมของปริศนาลักษณะนี้ยังไม่ชัดเจนนัก บ้างก็ว่ามันมาจากคำภาษากรีกโบราณเกี่ยวกับคอหรือคอหอย คือ stomachos (στόμαχος) เรียกปริศนาชนิดนี้ว่า Ostomachion ซึ่งเป็นคำประสมในภาษากรีก มาจากรากศัพท์ ὀστέον (osteon, กระดูก) และ μάχη (machē – ต่อสู้) นอกจากนี้ ปริศนานี้ยังเป็นที่รู้จักในชื่อว่า กระเป๋าของอาร์คิมิดีส หรือ กล่องของอาร์คิมิดีส
- ปัญหาเรื่องวัวของอาร์คิมิดีส (Archimedes' cattle problem)
- ก็อตต์โฮลด์ อีฟราม เลสซิง เป็นผู้ค้นพบงานนี้ในต้นฉบับลายมือภาษากรีก ประกอบด้วยบทกวี 44 บรรทัด ที่ห้องสมุดเฮอร์ซอก ออกัสต์ ในเมือง Wolfenbüttel ประเทศเยอรมัน เมื่อปี ค.ศ. 1773 เป็นงานเขียนถึงเอราทอสเทนีสและนักคณิตศาสตร์คนอื่น ๆ ในอเล็กซานเดรีย อาร์คิมิดีสท้าทายคนเหล่านั้นให้นับจำนวนวัวที่อยู่ในคอกสัตว์ของพระอาทิตย์ โดยแก้ปัญหาจำนวนจาก มีปัญหาลักษณะนี้ในรูปแบบที่ยากกว่าซึ่งต้องหาคำตอบออกมาเป็นเลขยกกำลังสอง ผู้แก้ปัญหานี้ได้เป็นคนแรกคือ เอ. อัมทอร์ ในปี ค.ศ. 1880 คำตอบที่ได้เป็นจำนวนขนาดใหญ่มาก คือประมาณ 7.760271 x 10206544
- นักคำนวณทราย (The Sand-Rekoner)
- เป็นตำราสั้น ๆ อธิบายระบบความคิดเรื่องจำนวนของกรีก อาร์คิมิดีสนับจำนวนของเม็ดทรายที่จะถมจนเต็มจักรวาล ในงานเขียนชิ้นนี้ยังกล่าวถึงระบบสุริยะตามทฤษฎีดวงอาทิตย์เป็นศูนย์กลางจักรวาล ซึ่งเสนอโดย รวมถึงแนวคิดร่วมสมัยอื่น ๆ เกี่ยวกับขนาดของโลก และระยะห่างระหว่างวัตถุท้องฟ้าต่าง ๆ อาร์คิมิดีสใช้ระบบจำนวนที่สร้างจากการยกกำลังของมีเรียด และสรุปว่าจำนวนเม็ดทรายที่จะถมจักรวาลได้คือ 8 x 1063 ตามระบบจำนวนยุคใหม่ ในจดหมายนำเรื่องของงานเขียนนี้ ระบุไว้ว่าบิดาของอาร์คิมิดีสเป็นนักดาราศาสตร์ ชื่อว่า ฟิเดียส นักคำนวณทราย หรือ Psammites เป็นงานเขียนที่เหลือรอดเพียงชิ้นเดียวที่อาร์คิมิดีสอภิปรายถึงมุมมองด้านดาราศาสตร์ของเขา
- ระเบียบวิธีเกี่ยวกับทฤษฎีบทกลศาสตร์ (The Method of Mechanical Theorems)
- แต่เดิมเชื่อกันว่าตำรานี้สูญหายไปแล้ว จนกระทั่งมีการค้นพบสมุดบันทึกของอาร์คิมิดีสในปี ค.ศ. 1906 ในงานเขียนนี้ อาร์คิมิดีสใช้แนวคิดกณิกนันต์ แสดงให้เห็นว่า การแตกรูปภาพหนึ่ง ๆ ออกเป็นชิ้นส่วนเล็ก ๆ จำนวนนับไม่ถ้วน สามารถใช้หาพื้นที่หรือปริมาตรได้อย่างไร บางทีอาร์คิมิดีสอาจเห็นว่าวิธีการนี้ยังไม่เคร่งครัดพอ เขาจึงใช้ระเบียบวิธีเกษียณ (method of exhaustion) มาช่วยในการหาคำตอบ งานเขียนนี้อยู่ในรูปแบบของจดหมายที่ส่งถึงเอราทอสเทนีสแห่งอเล็กซานเดรีย เช่นเดียวกับ ปัญหาเรื่องวัวของอาร์คิมิดีส
ผลงานที่สูญหาย
ผลงานเรื่อง Book of Lemmas หรือ Liber Assumptorum เป็นหนึ่งในตำราของอาร์คิมิดีสเกี่ยวกับสัดส่วน 15 ประการของธรรมชาติของวงกลม สำเนาชุดที่เก่าแก่ที่สุดเท่าที่รู้จักกันเขียนเอาไว้ในภาษาอารบิก นักวิชาการ ที.แอล.ฮีธ และ มาร์แชล คลาเกตต์ โต้แย้งว่ารูปแบบในปัจจุบันนี้ไม่น่าจะเขียนขึ้นโดยอาร์คิมิดีส เพราะมีการอ้างถึงอาร์คิมิดีสเองด้วย จึงน่าจะเป็นงานดัดแปลงที่เกิดจากผู้เขียนคนอื่น Lemmas อาจเป็นงานที่สร้างขึ้นจากผลงานก่อนหน้านี้ของอาร์คิมิดีสซึ่งปัจจุบันสูญหายไปแล้ว
นอกจากนี้ยังมีการกล่าวอ้างว่า อาร์คิมิดีสรู้จักซึ่งใช้ในการคำนวณพื้นที่ของสามเหลี่ยมจากความยาวของด้านทั้งสามc อย่างไรก็ดี หลักฐานอ้างอิงที่เชื่อถือได้ชิ้นแรกเกี่ยวกับสมการนี้ก็เป็นของเฮรอนแห่งอเล็กซานเดรียในคริสต์ศตวรรษที่ 1
สมุดบันทึกของอาร์คิมิดีส
เอกสารอันโดดเด่นที่สุดที่บรรจุผลงานของอาร์คิมิดีส ได้แก่ สมุดบันทึกของอาร์คิมิดีส (Archimedes Palimpsest) โจฮัน ลุดวิก ไฮเบิร์ก ศาสตราจารย์ชาวเดนมาร์กได้ไปเยี่ยมเยือนกรุงคอนสแตนติโนเปิลเมื่อปี ค.ศ. 1906 และได้ตรวจสอบบันทึกบนหนังแพะ 174 หน้าที่เขียนขึ้นในคริสต์ศตวรรษที่ 13 เขาค้นพบว่า มันคือ สมุดบันทึกพาลิมเซสต์ (palimpsest) คือเอกสารที่มีการเขียนข้อความซ้ำแล้วซ้ำอีกทับผลงานเขียนเดิม โดยการขูดหมึกจากงานเก่าออกแล้วนำแผ่นหนังกลับมาใช้ใหม่ ซึ่งเป็นวิธีการที่ใช้กันอยู่ทั่วไปในยุคกลางเพราะกระดาษหนังสัตว์มีราคาแพงมาก นักปราชญ์ในคริสต์ศตวรรษที่ 10 ได้ตรวจสอบและยืนยันว่างานเขียนเก่าบนพาลิมเซสต์เหล่านี้คือตำราของอาร์คิมิดีสที่ยังไม่มีใครรู้จักมาก่อน แผ่นหนังสัตว์เหล่านี้ถูกเก็บรักษาไว้ที่ห้องสมุดประจำอารามในกรุงคอนสแตนติโนเปิลเป็นเวลาหลายร้อยปี ก่อนจะถูกขายให้แก่นักสะสมเอกชนในราวคริสต์ทศวรรษ 1920 วันที่ 29 ตุลาคม ค.ศ. 1998 มันถูกนำออกประมูลขายไปให้แก่ผู้ซื้อที่ไม่ปรากฏชื่อเป็นเงิน 2 ล้านเหรียญสหรัฐที่บริษัทประมูลคริสตีส์ ในนครนิวยอร์ก ภายในพาลิมเซสต์นี้บรรจุตำรา 7 เล่ม ซึ่งรวมถึงสำเนาชุดเดียวที่เหลือรอดอยู่ของ On Floating Bodies ในต้นฉบับภาษากรีก เป็นแหล่งข้อมูลเดียวเท่าที่รู้จักของ The Method of Mechanical Theorems ซึ่งซุยดาสเคยกล่าวอ้างถึงและเชื่อกันว่าสูญหายไปตลอดกาลแล้ว การค้นพบ Stomachion ก็พบในพาลิมเซสต์นี้เช่นเดียวกัน พร้อมกับการวิเคราะห์ชุดสมบูรณ์ของปริศนาที่เคยพบในตำราอื่นก่อนหน้านี้
ปัจจุบันนี้ สมุดบันทึกพาลิมเซสต์ถูกเก็บรักษาเอาไว้ที่ ที่เมืองบัลติมอร์ รัฐแมริแลนด์ ซึ่งจะต้องถูกตรวจสอบด้วยกรรมวิธีทดสอบสมัยใหม่อีกหลายแบบ เช่นการตรวจด้วยแสงอัลตราไวโอเลตและแสงเอ็กซเรย์เพื่ออ่านข้อความที่ถูกเขียนทับไป
ตำราของอาร์คิมิดีสที่บรรจุอยู่ในสมุดบันทึกพาลิมเซสต์ชุดนี้ ได้แก่ : On the Equilibrium of Planes, On Spirals, Measurement of a Circle, On the Sphere and the Cylinder, On Floating Bodies, The Method of Mechanical Theorems และ Stomachion
อนุสรณ์
แอ่งบนดวงจันทร์แห่งหนึ่งได้รับการตั้งชื่อว่า แอ่งอาร์คิมิดีส (29.7° N, 4.0° W) เพื่อเป็นเกียรติแก่เขา นอกจากนี้มีเทือกเขาบนดวงจันทร์แห่งหนึ่ง ชื่อว่า เทือกเขาอาร์คิมิดีส (Montes Archimedes) (25.3° N, 4.6° W). รวมถึงดาวเคราะห์น้อย ซึ่งตั้งชื่อตามชื่อของเขาด้วย
เหรียญรางวัลฟิลด์ส สำหรับผู้ประสบความสำเร็จอย่างโดดเด่นด้านคณิตศาสตร์ สลักภาพเหมือนของอาร์คิมิดีสไว้บนเหรียญ พร้อมกับการพิสูจน์ของเขาเกี่ยวกับเรื่องของทรงกลมและทรงกระบอก คำจารึกรอบ ๆ ศีรษะของอาร์คิมิดีสคือคำพูดของเขาซึ่งเขียนไว้ในภาษาละตินว่า : "Transire suum pectus mundoque potiri" (จงยืนขึ้นเหนือตนเองและคว้าโลกไว้)
ภาพอาร์คิมิดีสยังปรากฏบนดวงตราไปรษณียากรของเยอรมนีตะวันออก (ค.ศ. 1973), กรีซ (ค.ศ. 1983), อิตาลี (ค.ศ. 1983), นิคารากัว (ค.ศ. 1971), ซานมารีโน (ค.ศ. 1982), และสเปน (ค.ศ. 1963)
คำประกาศของอาร์คิมิดีสว่า ยูเรก้า! กลายเป็นคำขวัญประจำรัฐของแคลิฟอร์เนีย โดยใช้ในความหมายที่อ้างถึงการค้นพบทองคำบริเวณใกล้โรงนาซุตเทอร์ ในปี ค.ศ. 1848 อันเป็นจุดเริ่มต้นยุคการขุดทองในแคลิฟอร์เนีย
ขบวนการเคลื่อนไหวพลเรือนแห่งหนึ่งซึ่งมีเป้าหมายในการเข้าถึงข้อมูลสุขภาพสากลในรัฐออริกอน สหรัฐอเมริกา ใช้ชื่อขบวนการว่า "ขบวนการอาร์คิมิดีส" (Archimedes Movement) นำโดยอดีตผู้ว่าการรัฐออริกอน จอห์น คิตซเฮเบอร์
เชิงอรรถ
หมายเหตุ a: ในบทนำของ On Spirals ที่ส่งถึงโอซิธูสแห่งเพลูเซียม อาร์คิมิดีสบอกว่า "หลายปีล่มสลายไปนับแต่โคนอนตาย" โคนอนแห่งซามอสมีชีวิตอยู่ระหว่าง 280-220 ปีก่อนคริสตกาล แสดงว่าตอนที่เขียนงานเหล่านี้ อาร์คิมิดีสคงจะชราแล้ว
หมายเหตุ b: ตำราของอาร์คิมิดีสซึ่งเป็นที่รู้จักกันโดยผ่านการอ้างถึงจากบุคคลอื่น ได้แก่ : On Sphere-Making และผลงานเกี่ยวกับรูปทรงหลายเหลี่ยม ซึ่งถูกกล่าวถึงโดยพัพพัสแห่งอเล็กซานเดรีย, Catoptrica ผลงานเกี่ยวกับแสง กล่าวถึงโดยธีออนแห่งอเล็กซานเดรีย, Principles กล่าวถึงโดยซีซิพพัส และมีการอธิบายระบบจำนวนเอาไว้ใน The Sand Reckoner; On Balances and Levers; On Centers of Gravity; On the Calendar สำหรับผลงานของอาร์คิมิดีสที่หลงเหลือรอดมานั้น ที.แอล.ฮีธ เห็นว่าลำดับในการเขียนเป็นดังต่อไปนี้ : On the Equilibrium of Planes I, The Quadrature of the Parabola, On the Equilibrium of Planes II, On the Sphere and the Cylinder I, II, On Spirals, On Conoids and Spheroids, On Floating Bodies I, II, On the Measurement of a Circle, The Sand Reckoner.
หมายเหตุ c: คาร์ล เบนจามิน บอยเออร์ A History of Mathematics (1991) "บัณฑิตชาวอาหรับบอกเราว่า มีสมการหาพื้นที่ที่คล้ายกัน สามารถหาพื้นที่สามเหลี่ยมได้จากความยาวด้านทั้งสาม เรียกชื่อว่า สมการของเฮรอน — k = √ (s (s − a) (s − b) (s − c) ) โดยที่ s คือ semiperimeter — สมการนี้อาร์คิมิดีสรู้มาก่อนแล้วหลายร้อยปีก่อนเฮรอนเกิด บัณฑิตอาหรับยังอ้างถึง 'theorem on the broken chord' ว่าเป็นงานของอาร์คิมิดีส ... ชาวอาหรับรายงานว่าอาร์คิมิดีสได้พิสูจน์ทฤษฎีบทมากมาย"
อ้างอิง
- "Archimedes Death Ray: Testing with MythBusters". MIT. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2013-06-20. สืบค้นเมื่อ 2007-07-23.
- Calinger, Ronald (1999). A Contextual History of Mathematics. Prentice-Hall. p. 150. ISBN .
Shortly after Euclid, compiler of the definitive textbook, came Archimedes of Syracuse (ca. 287 212 BC), the most original and profound mathematician of antiquity.
- "Archimedes of Syracuse". The MacTutor History of Mathematics archive. January 1999. เก็บจากแหล่งเดิมเมื่อ 20 June 2013. สืบค้นเมื่อ 9 June 2008.
- O'Connor, J.J.; Robertson, E.F. (February 1996). "A history of calculus". University of St Andrews. จากแหล่งเดิมเมื่อ 15 July 2007. สืบค้นเมื่อ 7 August 2007.
- Bursill-Hall, Piers. com_mediadb/task, view/idstr, CU-MMP-PiersBursillHall/Itemid, 30 "Galileo, Archimedes, and Renaissance engineers". sciencelive with the University of Cambridge. สืบค้นเมื่อ 2007-08-07.
{{}}
: ตรวจสอบค่า|url=
((help))[] - . Walters Art Museum. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-09-28. สืบค้นเมื่อ 2007-10-14.
- Heath, T. L., Works of Archimedes, 1897
- Plutarch (October 1996). Parallel Lives Complete e-text from Gutenberg.org. Project Gutenberg. จากแหล่งเดิมเมื่อ 20 September 2008. สืบค้นเมื่อ 23 July 2007.
- O'Connor, J.J. and Robertson, E.F. "Archimedes of Syracuse". University of St Andrews. สืบค้นเมื่อ 2007-01-02.
{{}}
: CS1 maint: multiple names: authors list () - Rorres, Chris. "Death of Archimedes: Sources". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2007-01-02.
- "The Death of Archimedes: Illustrations". math.nyu.edu. New York University. จากแหล่งเดิมเมื่อ 29 September 2015. สืบค้นเมื่อ 13 December 2017.
- Rorres, Chris. "Tomb of Archimedes: Sources". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2007-01-02.
- Rorres, Chris. "Tomb of Archimedes - Illustrations". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2011-03-15.
- Rorres, Chris. "Siege of Syracuse". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2007-07-23.
- Vitruvius. "De Architectura, Book IX, paragraphs 9–12, text in English and Latin". University of Chicago. สืบค้นเมื่อ 2007-08-30.
- "Incompressibility of Water". Harvard University. สืบค้นเมื่อ 2008-02-27.
- HyperPhysics. "Buoyancy". Georgia State University. สืบค้นเมื่อ 2007-07-23.
- Rorres, Chris. "The Golden Crown". Drexel University. สืบค้นเมื่อ 2009-03-24.
- Carroll, Bradley W. "Archimedes' Principle". Weber State University. สืบค้นเมื่อ 2007-07-23.
- Rorres, Chris. "The Golden Crown: Galileo's Balance". Drexel University. สืบค้นเมื่อ 2009-03-24.
- Casson, Lionel (1971). Ships and Seamanship in the Ancient World. Princeton University Press. ISBN .
- Dalley, Stephanie. Oleson, John Peter. "Sennacherib, Archimedes, and the Water Screw: The Context of Invention in the Ancient World". Technology and Culture Volume 44, Number 1, January 2003 (PDF). สืบค้นเมื่อ 2007-07-23.
{{}}
: CS1 maint: multiple names: authors list () - Rorres, Chris. "Archimedes screw – Optimal Design". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2007-07-23.
- An animation of an Archimedes screw
- "SS Archimedes". wrecksite.eu. สืบค้นเมื่อ 2011-01-22.
- Rorres, Chris. "Archimedes' Claw – Illustrations and Animations – a range of possible designs for the claw". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2007-07-23.
- Carroll, Bradley W. "Archimedes' Claw – watch an animation". Weber State University. สืบค้นเมื่อ 2007-08-12.
- Hippias, 2 (cf. Galen, On temperaments 3.2, who mentions pyreia, "torches"); Anthemius of Tralles, On miraculous engines 153 [Westerman].
- John Wesley. "A Compendium of Natural Philosophy (1810) Chapter XII, Burning Glasses". Online text at Wesley Center for Applied Theology. จากแหล่งเดิมเมื่อ 2007-10-12. สืบค้นเมื่อ 2007-09-14.
- 00.html?promoid=googlep "Archimedes' Weapon". Time Magazine. November 26, 1973. สืบค้นเมื่อ 2007-08-12.
{{}}
: ตรวจสอบค่า|url=
((help))[] - Bonsor, Kevin. "How Wildfires Work". HowStuffWorks. สืบค้นเมื่อ 2007-07-23.
- Fuels and Chemicals – Auto Ignition Temperatures
- "TV Review: MythBusters 8.27 – President's Challenge". สืบค้นเมื่อ 2010-12-18.
- Rorres, Chris. "The Law of the Lever According to Archimedes". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2010-03-20.
- Clagett, Marshall (2001). Greek Science in Antiquity. Dover Publications. ISBN . สืบค้นเมื่อ 2010-03-20.
- อ้างโดย ใน Synagoge, Book VIII
- Dougherty, F. C.; Macari, J.; Okamoto, C. . Society of Women Engineers. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-07-18. สืบค้นเมื่อ 2007-07-23.
{{}}
: CS1 maint: multiple names: authors list () - . Technology Museum of Thessaloniki. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-09-05. สืบค้นเมื่อ 2007-09-14.
- Cicero. "De re publica 1.xiv §21". thelatinlibrary.com. สืบค้นเมื่อ 2007-07-23.
- Cicero. "De re publica Complete e-text in English from Gutenberg.org". Project Gutenberg. สืบค้นเมื่อ 2007-09-18.
- Rorres, Chris. "Spheres and Planetaria". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2007-07-23.
- "Ancient Moon 'computer' revisited". BBC News. November 29, 2006. สืบค้นเมื่อ 2007-07-23.
- Plutarch. "Extract from Parallel Lives". fulltextarchive.com. สืบค้นเมื่อ 2009-08-10.
- Kaye, R.W. "Archimedean ordered fields". web.mat.bham.ac.uk. สืบค้นเมื่อ 2009-11-07.
- Quoted in Heath, T. L. Works of Archimedes, Dover Publications, .
- Carroll, Bradley W. "The Sand Reckoner". Weber State University. สืบค้นเมื่อ 2007-07-23.
- Encyclopedia of ancient Greece By Wilson, Nigel Guy p. 77 (2006)
- . Brown University Library. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-08-08. สืบค้นเมื่อ 2007-07-23.
- Van Helden, Al. "The Galileo Project: Hydrostatic Balance". Rice University. สืบค้นเมื่อ 2007-09-14.
- Heath, T.L. "The Works of Archimedes (1897). The unabridged work in PDF form (19 MB)". Archive.org. สืบค้นเมื่อ 2007-10-14.
- Kolata, Gina (December 14, 2003). "In Archimedes' Puzzle, a New Eureka Moment". The New York Times. สืบค้นเมื่อ 2007-07-23.
- Ed Pegg Jr. (November 17, 2003). "The Loculus of Archimedes, Solved". Mathematical Association of America. สืบค้นเมื่อ 2008-05-18.
- Rorres, Chris. "Archimedes' Stomachion". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2007-09-14.
- "Graeco Roman Puzzles". Gianni A. Sarcone and Marie J. Waeber. สืบค้นเมื่อ 2008-05-09.
- Krumbiegel, B. and Amthor, A. Das Problema Bovinum des Archimedes, Historisch-literarische Abteilung der Zeitschrift Für Mathematik und Physik 25 (1880) pp. 121–136, 153–171.
- Calkins, Keith G. "Archimedes' Problema Bovinum". Andrews University. สืบค้นเมื่อ 2007-09-14.
- . . คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-08-11. สืบค้นเมื่อ 2007-07-23.
- "Archimedes' Book of Lemmas". . สืบค้นเมื่อ 2007-08-07.
- O'Connor, J.J.; Robertson, E.F. (February 1996). "A history of calculus". University of St Andrews. จากแหล่งเดิมเมื่อ 15 July 2007. สืบค้นเมื่อ 7 August 2007.
- Miller, Mary K. (March 2007). . Smithsonian Magazine. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2008-01-19. สืบค้นเมื่อ 2008-01-24.
- "Rare work by Archimedes sells for $2 million". CNN. October 29, 1998. จากแหล่งเดิมเมื่อ 2008-05-16. สืบค้นเมื่อ 2008-01-15.
- "X-rays reveal Archimedes' secrets". BBC News. August 2, 2006. สืบค้นเมื่อ 2007-07-23.
- Friedlander, Jay and Williams, Dave. "Oblique view of Archimedes crater on the Moon". NASA. สืบค้นเมื่อ 2007-09-13.
{{}}
: CS1 maint: multiple names: authors list () - . NASA. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-10-12. สืบค้นเมื่อ 2007-09-13.
- "Fields Medal". International Mathematical Union. จากแหล่งเดิมเมื่อ 2007-07-01. สืบค้นเมื่อ 2007-07-23.
- Rorres, Chris. "Stamps of Archimedes". Courant Institute of Mathematical Sciences. สืบค้นเมื่อ 2007-08-25.
- . California State Capitol Museum. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-10-12. สืบค้นเมื่อ 2007-09-14.
- . คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2010-11-13. สืบค้นเมื่อ 2011-04-09.
แหล่งข้อมูลอื่น
- อาร์คิมิดีส 2012-01-15 ที่ เวย์แบ็กแมชชีน โดยธวัชชัย ดุลยสุจริต เผยแพร่ครั้งแรกในนิตยสาร Update (ไทย)
- The Archimedes Palimpsest project at The Walters Art Museum in Baltimore, Maryland
- The Mathematical Achievements and Methodologies of Archimedes 2004-12-09 ที่ เวย์แบ็กแมชชีน
- Article examining how Archimedes may have calculated the square root of 3 2010-02-06 ที่ เวย์แบ็กแมชชีน at MathPages
- Archimedes On Spheres and Cylinders at MathPages
- Photograph of the Sakkas experiment in 1973
- Testing the Archimedes steam cannon 2010-03-29 ที่ เวย์แบ็กแมชชีน
- Stamps of Archimedes 2010-10-18 ที่ เวย์แบ็กแมชชีน
wikipedia, แบบไทย, วิกิพีเดีย, วิกิ หนังสือ, หนังสือ, ห้องสมุด, บทความ, อ่าน, ดาวน์โหลด, ฟรี, ดาวน์โหลดฟรี, mp3, วิดีโอ, mp4, 3gp, jpg, jpeg, gif, png, รูปภาพ, เพลง, เพลง, หนัง, หนังสือ, เกม, เกม, มือถือ, โทรศัพท์, Android, iOS, Apple, โทรศัพท์โมบิล, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, Sonya, MI, PC, พีซี, web, เว็บ, คอมพิวเตอร์
xarkhimidis krikobran Ἀrximhdhs ar kʰi mɛː dɛ ːs xngkvs Archimedes p 287 212 pikxn kh s epnnkkhnitsastr nkdarasastr nkprchya nkfisiks aelawiswkrchawkrik ekidemux 287 pikxnkhristkal inemuxngsirakusa sunginewlannepnnikhmthaeruxkhxngkrik aemcamiraylaexiydekiywkbchiwitkhxngekhanxymak aetekhakidrbykyxngwaepnhnunginbrrdankwithyasastrchnnainsmykhlassik khwamkawhnainngandanfisikskhxngekhaepnrakthanihaekwicha sthitysastrkhxngihl sthitysastr aelakarxthibayhlkkarekiywkbkhan ekhaidchuxwaepnphukhidkhnnwtkrrmekhruxngckrklhlaychin sungrwmipthungpmekliyw screw pump sungidtngchuxtamchuxkhxngekhadwy phlkarthdlxnginyukhihmidphisucnaelwwa ekhruxngckrthixarkhimidisxxkaebbnnsamarthykeruxkhuncaknahruxsamarthcudifephaeruxidodyxasyaethbkrackcanwnmakxarkhimidisaehngsirakusa Ἀrximhdhsxarkhimidiskalngkhrunkhid ody 1620 ekidpraman 287 pikxn kh s sirakusa sisili mngnaikrkixaesiychiwitpraman 212 pikxn kh s xayupraman 75 pi sirakusamichuxesiyngcakhlkkarkhxngxarkhimidis ekliywxarkhimidis sthitysastrkhxngihl khan kniknntxachiphthangwithyasastrsakhakhnitsastr fisiks wiswkrrm darasastr bthkhwamnixangxingkhristskrach khristthswrrs khriststwrrs sungepnsarasakhykhxngenuxha xarkhimidisidrbykyxngxyangkwangkhwangwaepnnkkhnitsastrthiyingihythisudinyukhobran aelahnunginnkkhnitsastrthiyingihythisudtlxdkal echnediywkb niwtn ekas aela xxyelxr ekhaichraebiybwithieksiyn Method of Exhaustion inkarkhanwnphunthiitesnokhngpharaobladwykarhaphlrwmkhxngchudxnukrmxnnt aelaidkhapramanthiiklekhiyngthisudkhxngkhaphay ekhayngkahndniyamaekwngknhxykhxngxarkhimidis sungidchuxtamchuxkhxngekha khidkhnsmkarhaprimatrkhxngrupthrngthiekidcakphunphiwthiidcakkarhmun aelakhidkhnrabbsahrbichbngbxkthungtwelkhcanwnihymak xarkhimidisesiychiwitinrahwangkarlxmsirakhiws raw 214 212 pikxnkhristkal odythukthharormnkhnhnungsnghar thng thimikhasngmawahamthaxntrayaekxarkhimidis kiaekorbrryaythungkareyiymhlumsphkhxngxarkhimidissungmilukthrngklmcarukxyuphayinaethngthrngkrabxkehnuxhlumsph enuxngcakxarkhimidisepnphuphisucnwa thrngklmmiprimatraelaphunthiphiwepn 2 in 3 swnkhxngthrngkrabxkthibrrcuthrngklmnnphxdi rwmphunthikhxngthanthrngkrabxkthngsxngkhang sungnbepnkhwamsaerckhrngyingihythisudkhxngekhainthangkhnitsastr khnathiphlnganpradisthkhxngxarkhimidisepnthiruckkndi aetnganekhiynthangdankhnitsastrklbimkhxyepnthiaephrhlaynk nkkhnitsastrcakxelksanedriyidxannganekhiynkhxngekhaaelanaipxangxing thwamikarrwbrwmphlnganxyangaethcringepnkhrngaerkinchwng kh s 530 ody ixsidxr aehngmieltus Isidore of Miletus swnnganwicarnnganekhiynkhxngxarkhimidissungekhiynkhunody yuotesiys aehngxskhalxn Eutocius of Ascalon inkhriststwrrsthi 6 chwyepidephyphlngankhxngekhaihkwangkhwangyingkhunepnkhrngaerk tnchbbnganekhiynkhxngxarkhimidishlngehluxrxdphanyukhklangmaidimmaknk aetkepnaehlngkhxmulsakhythimixiththiphlxyangmaktxaenwkhidkhxngnkwithyasastrinyukherxenssxngs pi kh s 1906 mikarkhnphbtnchbbnganekhiynkhxngxarkhimidisthiimekhymiikhrehnmakxn in carukkhxngxarkhimidis Archimedes Palimpsest thaiheraehnmummxngihminklwithithiekhaichkhnhaphllphththangkhnitsastrprawtithrngklm miprimatraelaphunthiphiwepn 2 3 khxngthrngkrabxkthibrrcuthrngklmnnidphxdi miruppnthrngklminthrngkrabxktidtngxyuphayinhlumsphkhxngxarkhimidis tamkhakhxkhxngekha xarkhimidisekidraw 287 pikxnkhristkal thiemuxngsirakusa sisili sungewlannepnxananikhmpkkhrxngtnexngkhxngmngnaikrkixa wnekidkhxngxarkhimidisnnxangxingcakbnthukkhxngnkprawtisastrkrikibesnithn cxhn estess sungrabuwaxarkhimidismixayu 75 pi in The Sand Reckoner xarkhimidisbxkwabidakhxngtnchux fiediys epnnkdarasastr sungimpraktkhxmulid ely phlutharkekhiynexaiwin Parallel Lives khxngekhawa xarkhimidisepnyatikbkstriyehiyorthi 2 aehngsirakusa ephuxnkhxngxarkhimidiskhnhnungchux ehrakhlidis epnphuekhiynhnngsuxchiwprawtikhxngekha aethnngsuxelmnisuyhayip thaihraylaexiydchiwitkhxngekhayngepnthikhlumekhrux dngechn imthrabelywaekhaaetngnganhruxim hruxmibutrhruxim emuxyngeyawxarkhimidisxacidrbkarsuksathixelksanedriy emuxnghnunginxanackrxiyiptobran rwmyukhsmykbokhnxnaehngsamxs aelaexrathxsethnisaehngisrin ephraaekhaekhyxangthungokhnxnaehngsamxswaepnshay aelainnganekhiynkhxngekha 2 chin idaek raebiybwithiekiywkbthvsdibthklsastr The Method of Mechanical Theorems aela Cattle Problem kidklawthungexrathxsethnisdwya xarkhimidisesiychiwitemuxpithi 212 kxnkhristkalrahwangsngkhramphiwnikkhrngthisxng emuxkxngthphormnphayitkarnathphkhxngnayphlmarkus ekladixus maraekllus ekhayudemuxngsirakusaidhlngcakpidlxmxyu 2 pi tambnthukxnodngdngkhxngphluthark xarkhimidiskalngkhbkhidaephnphaphthangkhnitsastrchinhnungrahwangthinkhrthukyud thharormnkhnhnungsngihekhaxxkmaphbkbnayphlmareslls aetekhaptiesthodybxkwatxngaekpyhaihesrcesiykxn thharphunncungbndalothsaaelasngharxarkhimidisdwydab phlutharkyngbnthukeruxngelaxikeruxnghnungwaxarkhimidisthuksngharkhnaphyayamcanntxthharormn tameruxnghlngni xarkhimidisthuxekhruxngmuxthangkhnitsastrchinhnung aelathuksngharenuxngcakthharnukwamnepnsingmikha bnthukelawanayphlmaresllsokrthmakemuxthraberuxngkaresiychiwitkhxngxarkhimidis dwythuxwaekhaepnthrphysmbtixnelxkhayingthangwithyasastr thngyngxxkkhasngipaelwwahamthaxntrayaekekhaodyeddkhad kartaykhxngxarkhimidis kh s 1815 wadody Thomas Degeorge khaphudsudthaykhxngxarkhimidistamthiechuxknkhux xyamakwnwngklmkhxngkha krik mὴ moy toὺs kykloys taratte xngkvs Do not disturb my circles wngklmthiphudthungnnkhuxphaphkhnitsastrthiechuxwaekhakalngsuksakhbkhidxyukhnathithukthharormnrbkwn khaphudnimkklawthunginphasalatinwa Noli turbare circulos meos aetimmihlkthanthinaechuxthuxwaxarkhimidisphudpraoykhnicring aelaimidxyuinbnthukkhxngphlutharkdwy hlumsphkhxngxarkhimidisbrrcuruppnmakmaythiaesdngthungkarphisucnthangkhnitsastrthiekhachxb echnthrngklmthixyuphayinthrngkrabxkthimikhwamsungaelaesnphansunyklangethakn xarkhimidisidphisucnwaprimatraelaphunthiphiwkhxngthrngklmmikhnadepn 2 in 3 khxngprimatraelaphunthiphiwkhxngthrngkrabxk rwmphunthithan inpithi 75 kxnkhristkal hlngcakxarkhimidisesiychiwitipaelw 137 pi kiaekoridepnkhunkhlngaehngsisili ekhaidyineruxngrawekiywkbhlumsphkhxngxarkhimidis aetimmichawemuxngkhnidbxktaaehnngthichdecnid inewlatxmaekhaphbhlumsphbriewniklpratuxkrieccnthininemuxngsirakusasungthukthingrangaelakhlumipdwysumthumphumim kiaekorsngkarihthakhwamsaxad cungsamarthmxngehnrxyslkaelathxykhacaruk hlumsphaehnghnungthikhnphbinsnamhyakhxngorngaermhnunginsirakusaemuxtnkhristthswrrs 1960 xangtwwaepnhlumsphkhxngxarkhimidis aetthungpccubnni kimmiikhrthrabtaaehnngthiaethcringaelw kiaekorkhnphbhlumfngsphkhxngxarkhimidis kh s 1805 wadody bnthukchiwprawtikhxngxarkhimidischbbmatrthanekhiynkhunodynkprawtisastrormnhlaykhnhlngcakthiekhaesiychiwitipaelwepnewlanan bnthukeruxngkaryudemuxngsirakusain Universal History khxngphxliebiys ekhiynkhunpraman 70 pihlngkaresiychiwitkhxngxarkhimidis aelatxmathukichepnaehlngkhxmulkhxngphlutharkaelaliwi enuxhainbnthukniihkhxmulekiywkbchiwitkhxngxarkhimidisnxymak swnihycaklawthungkarichekhruxngckryntinsngkhram sungxarkhimidissrangkhunephuxichpxngknemuxngkarkhnphbaelasingpradisthmngkudthxngkha xarkhimidisxacichhlkkarkhxngkarlxytw inkarphisucnwamngkudthxngkhamikhwamhnaaenntakwathxngkhaaethng eruxngelathiruckknaephrhlaythisudekiywkbxarkhimidis khuxkarthiekhakhnphbklwithiinkarhaprimatrkhxngwtthusungmiruprangaeplk tambnthukkhxngwithruewiys elawawdaehnghnungsrangmngkudthwayaedphraecaehiyorthi 2 odyphraxngkhthrngcdhathxngkhabrisuththiih xarkhimidisthukrxngkhxihchwytrwcsxbwamikarchxokngodyphsmenginlngipdwyhruxim kartrwcsxbcatxngimthaihmngkudesiyhay dngnnekhacahlxmmnihepnrupthrngpktiephuxkhanwnhakhakhwamhnaaennimid wnhnungkhnaxabna ekhasngektwaradbnainxangephimsungkhunkhnaekhakawlngip cungkhididwawithikarnisamarthichinkarhaprimatrkhxngmngkudid ephraatampktiaelw naimsamarththukbibxdid dngnnmngkudthicumlngipinnayxmtxngaethnthidwyprimatrkhxngnathiethakbprimatrkhxngmngkudnnexng emuxnaprimatrmahardwymwlkhxngmngkud ksamarthhakhakhwamhnaaennkhxngmngkudid thamikarphsmolharakhathukxunekhaip khakhwamhnaaennnicatakwakhakhwamhnaaennkhxngthxngkha xarkhimidiswingxxkipyngthxngthnnthngthiyngaekpha dwykhwamtunetncakkarkhnphbkhrngnicnlumaetngtw aelwrxngtaoknwa yuerka krik eὕrhka aeplwa chnphbaelw karthdsxbcdthakhunxyangprasbphlsaerc aelaphisucnidwamikarphsmenginekhaipinmngkudcring eruxngkhxngmngkutthxngkhaimpraktxyuinphlngankhxngxarkhimidisthiruckkn yingkwann klwithithibrryayexaiwyngthaihekidkhwamsngsyekiywkbkhwamaemnyaxyangyingywdinkartrwcwdkhakhxngkaraethnthikhxngna bangthixarkhimidisxaccakhnhawithikarprayukthlkkarthiruckkninsthitysastrkhxngihlwadwyeruxnghlkkarkhxngxarkhimidis sungekhabrryayiwintaraeruxng On Floating Bodies hlkkarnibxkwa wtthuthicumlnginkhxngihlcamiaernglxytwethakbnahnkkhxngkhxngihlthimnekhaipaethnthi dwyhlkkarni cungepnipidthicaepriybethiybkhwamhnaaennkhxngmngkudthxngkhakbthxngkhaaethng odykarthwngmngkudthxngkhakbthxngkhathiichxangxing caknncumxupkrnthnghmdlnginna thamngkudmikhwamhnaaennnxykwathxngkhaaethng mncaaethnthinadwyprimatrthimakkwa thaihmiaernglxytwmakkwathxngkhaxangxing aernglxytwthiaetktangkncathaihekhruxngthwngimsmdul kalieloxehnwawithikarni xacepnwithikarediywknkbthixarkhimidisich enuxngcakmikhwamaemnyasung cungxacepnwithithdlxngthixarkhimidiskhnphbdwytnexng ekliywxarkhimidis ekliywxarkhimidis samarthkhnyaynaipidxyangmiprasiththiphaph nganswnihykhxngxarkhimidisthangdanwiswkrrmekidkhunenuxngcaktxngkartxbsnxngtxbanekidkhxngekha khuxemuxngsirakusa nkekhiynkrikchux xathienxus aehngenaekhrtis brryaythungkarthiphraecaehiyorthi 2 wacangihxarkhimidisxxkaebberuxkhnadyks chux israkhuesiy Syracusia ephuxnaipichinkaredinthangxyanghruhra samarthbrrthukesbiyngmak aelaichepneruxrbid waknwaeruxisrakhuesiyniepneruxkhnadihythisudthiekhysranginsmyobran tambnthukkhxngxathienxus eruxnisamarthbrrthukkhn 600 khn rwmipthungekhruxngtkaetngthxngkha miorngfukaelawdxuthisaedethphixofridth rwmthungsingxanwykhwamsadwkxun eruxthiihykhnadnicakinnaphantweruxcanwnmak cungmikarphthnaekliywxarkhimidisephuxichinkarkhnthaynaxxkcakthxngerux ekhruxngckrkhxngxarkhimidisepnxupkrnthimiibphdthrngekliywhmunxyuphayinthrngkrabxk ichmuxhmun aelasamarthichkhnyaynacakthiid ipyngkhlxngchlprathankid thukwnnierayngichekliywxarkhimidisxyuinkarsubnahruxkhxngaekhngthiepnemld echnthanhinhruxemldkhaw epntn ekliywxarkhimidisthibrryayinbnthukkhxngwithruewiysinsmyormnxacepnkarphthnaekhruxngsubnaaebbekliywsungichinkarcaynaihaekswnlxyaehngbabioln eruxixnalaaerkkhxngolkthiichibckraebbekliyw khux SS Archimedes xxkeruxkhrngaerkinpi kh s 1839 aelatngchuxephuxepnekiyrtiaekxarkhimidisaelaphlngankhidkhnibckrekliyw krngelbxarkhimidis krngelbxarkhimidis khuxxawuthchnidhnungthiekhaklawiwwaxxkaebbmaephuxichpxngknemuxngsirakusa bangkruckinchux ekhruxngekhyaerux prakxbdwyaekhnkllksnakhlayekhrnodymikhxolhakhnadihyhiwexaiwdanbn emuxplxykrngelbniiseruxthimaocmti aekhnklcaehwiyngtwklbkhundanbn ykeruxkhuncaknaaelabangthikthaiheruxcm mikarthdlxngyukhihmephuxthdsxbkhwamepnipidkhxngkrngelbni aelainsarkhdithangothrthsnpi 2005 chuxeruxngwa Superweapons of the Ancient World idsrangkrngelbechnnikhunma idkhxsrupwamnepnekhruxngmuxthiichidphlcring rngsikhwamrxnkhxngxarkhimidis xarkhimidisxacichkrackinkarrwmaesngehmuxncansathxnaebbpharaobla inkarephakxngeruxormnthiykmaocmtisirakusa emuxkhriststwrrsthi 2 luechiynekhiynwarahwangkarlxmsirakhiws 214 212 pikxnkhristkal xarkhimidisthalayeruxfaystrudwyif hlaystwrrstxma aexnthimixusaehngthrxlels exythungelnsrwmaesngwaepnxawuthkhxngxarkhimidis xupkrnnibangkhrngkeriykwa rngsikhwamrxnkhxngxarkhimidis ichinkarrwmcudofkskhxngaesngxathitysxngipyngeruxthirukran thaiheruxehlanntidif xawuthdngklawniepnhwkhxthkethiyngknekiywkbphukhidkhnmaepnewlanancnthungyukherxenssxngs erxen edskhartsehnwaepneruxnghlxk khnathinkwicyyukhihmhlaykhnphyayamsrangmnkhunmaihmodyichekhruxngmuxephiyngethathimixyuinyukhkhxngxarkhimidis khwamehnbangswnehnwa aephngolthxngaednghruxolsaridkhdmnplabcanwnmaksamarthichaethnkrackaelaofksaesngxathitysxngipbnerux sungxacichhlkkarkhxngcansathxnaebbpharaoblainlksnathikhlaykhlungkbetarngsiaesngxathity emuxpi kh s 1973 mikarthdsxbrngsikhwamrxnkhxngxarkhimidisodynkwithyasastrchawkrikchux oyaexnnis skhkhs thakarthdlxngthithanthpheruxskaramaks skaramagas aethbnxkemuxngexethns ichkrack 70 chud aetlachudmikhnadraw 5x3 fut ekhluxbphiwdwythxngaedng aephngkrackphungepaipthiaephnimbneruxormnthixyuhangxxkippraman 160 fut emuxprbofkskrackihaemnya eruxklukepnifinewlaephiyngimkiwinathi eruximnnthaphiwdwyyangim sungxacchwyihtidifidngaykhun eduxntulakhm kh s 2005 nksuksaklumhnungcaksthabnethkhonolyiaemssachuests thakarthdlxngdwykrackkhnad 1 fut 127 aephn mungepaipthieruximthixyuhangxxkip 100 fut eruxsamarthtidifid aetkemuxthxngfaprascakemkhaelaeruxnnxyuning praman 10 nathi cungsrupidwaekhruxngmuxniepnxawuththiepnipidphayitenguxnikh klumnksuksaexmixthithakarthdlxngsainraykarothrthsn MythBusters odyicheruxtkplathacakiminsanfransisokepnepahmay eruxnnihmekriymepnthan mieplwifcanwnelknxy karthiimcalukepnifcatxngmixunhphumisungthungcudtidifthipraman 300 C 570 F emuxraykar MythBusters xxkxakasphlkarthdlxngthisanfransisokemuxeduxnmkrakhm kh s 2006 phlsruperuxngkhaklawxangnntkepn lmehlw enuxngcakrayaewlathitxngichkbenguxnikhthangsphawaxakasthicaepntxkarlukihm raykaryngchipraednwaemuxngsirakusatnghnhnasuthaelthangtawnxxk dngnnkxngeruxormncatxngekhaocmtirahwangchwngechaephuxcasamarthichkrackrwmaesngidphldithisud MythBusters yngchixikwainrayathiiklkhnadnn karichxawuthaebbdngedim echnkaryingthnuifhruxichekhruxngyinghin yngcathaidngaykwakarcudifaebbniesiyxik eduxnthnwakhm kh s 2010 raykar MythBusters phakhphiessodybarkh oxbama intxnthichuxwa President s Challenge idthakarthdlxngrngsikhwamrxnnisaxikkhrng mikarthdlxnghlaykhrng rwmthungkarthdsxbkhnadihyodyichedknkeriynthung 500 khnchwyknsxngkrackipyngeruxormnthirayahang 400 fut karthdlxngthukkhrngimsamarththaxunhphumiidthung 210 C ephuxihtidifidely phllphthcungsrupwa lmehlw xikkhrng thangraykarsrupwa phlkrathbprakarxuncakkarichkrackxacthaihthharbnkxngeruxtaphralay mxngimehn sbsnmunngng hruxchwyhnehkhwamsnicmakkwa karkhnphbaelasingpradisthxun aemxarkhimidismiichphukhnphbkhan aetekhaepnphuxthibaythunghlkkarkhxngmninnganekhiynkhxngekhaeruxng On the Equilibrium of Planes mibnthukkxnhnanithiekiywkbkhanphbinsanksuksaephriphaeththik Peripatetic school khxngluksisykhxngxrisotetil aelamibangswnpraktinngankhxngdwy tambnthukkhxngphphphsaehngxelksanedriy ngankhxngxarkhimidisekiywkbkhanepnthimakhxngpraoykhxnodngdngwa hathiyunihchnsi aelwchncaekhluxnolkih krik dῶs moi pᾶ stῶ kaὶ tὰn gᾶn kinasw phlutharkekhybrryayiwwaxarkhimidisxxkaebbrabbchkrxkxyangir sungthaihklasisamarthichhlkkarkhxngkhaninkarykwtthuthihnkekincaykihw xarkhimidisyngidrbykyxnginthanaphuphthnaihmikalngaelakhwamaemnyamakkhun rwmthungkarpradisthmatrwdxxdxmietxrrahwangsngkhramphiwnikkhrngthihnung xxdxmietxrnimikarbrryayiwwamilksnaehmuxnekwiynthimiklikfnefuxngkhxythinglukbxllnginphachnabrrcuemuxedinthangipidthukrayahnungiml kiaekor 106 43 pikxnkhristkal klawthungxarkhimidissn innganekhiynpraephthbthsnthnakhxngekhaeruxng De re publica sungepnbthsnthnasmmutithiekidkhuninpi 129 kxnkhristkal hlngcakkarpidlxmsirakusaemuxpithi 212 kxnkhristkalaelw elaknwanayphlmarkhs ekhladixs mareslls naexaekhruxngklik 2 chinthiichchwyinkarsuksadarasastrklbipyngorm ekhruxngkliknichwyaesdngkarekhluxnthikhxngdwngxathity dwngcnthr aeladawekhraah 5 dwng kiaekorrabuthungekhruxngklikthikhlaykhlungknniwaxxkaebbody aela innganekhiynnnklawwa maresllsekbekhruxngmuxchinhnungexaiwepnkhxngsasmswntwcaksirakusa swnxikchinhnungsngipyngwiharaehngkhwambrisuththiinkrungorm tamnganekhiynkhxngkiaekor ikxs suphisixus klls idsathitekhruxngklikkhxngmaresllsihaek luechiys fueriys filus sungbrryayexaiwwa Hanc sphaeram Gallus cum moveret fiebat ut soli luna totidem conversionibus in aere illo quot diebus in ipso caelo succederet ex quo et in caelo sphaera solis fieret eadem illa defectio et incideret luna tum in eam metam quae esset umbra terrae cum sol e regione emuxkllsekhluxnlukolk duehmuxndwngcnthrbnsingpradisthsaridnncaekhluxntamdwngxathityiphlayrxbehmuxnxyangthiekidkhunbnthxngfa thngyngthaihekidkhrasbnthrngklmdwngxathityehmuxnkbbnthxngfadwy aeladwngcnthrkekhluxnmayngtaaehnngthithaihekidengabnolk emuxdwngxathitymaxyuinaenwediywkn nnkhuxkhabrryaythungthxngfacalxnghruxaebbcalxngwngokhcrdawekhraahnnexng phphphsaehngxelksanedriyrabuwa xarkhimidisidekhiyntnchbblaymuxchudhnung pccubnsuyhayipaelw ekiywkbkarkxsrangklikehlaniexaiw nganwicyyukhihminsakhaniidmungkhwamsnicipthiklikxntikhuxethra sungepnekhruxngmuxxikchnidhnungcakyukhkhlassikthixaccaxxkaebbkhunmaephuxwtthuprasngkhediywkn klikkarsrangpraephthnicaepntxngichkhwamruxnsbsxnluksungekiywkb sungkhrnghnungekhykhidknwaxyuphncakethkhonolyithiepnipidinyukhobran aetkarkhnphbklikxntikhuxethrainpi kh s 1902 chwyyunynwaekhruxngmuxpraephthniepnthiruckkntngaetyukhkrikobranaelwngandankhnitsastrxarkhimidismkidrbykyxnginthanaphuxxkaebbsingpradisthklik aetekhakmiswnrwminwithyakardankhnitsastrimnxy phlutharkekhiyniwwa ekhathumethkhwamrkaelakhwamthaeyxthayanthngmwliwkbkaresiyngochkhxnbrisuththi sungprascakkhwamcaepnaehngmaryaid inchiwit xarkhimidisichraebiybwithieksiyninkarpramankhakhxng p xarkhimidissamarthichaenwkhidkniknntinwithithikhlaykhlungkbaekhlkhulsechingpriphnthkhxngyukhihm dwykarphisucnaeyng ekhasamarthhakhatxbkhxngpyhathimiradbkhwamaemnyasungmak idodykahndkhxbekhtthikhatxbnntngxyu ethkhnikhniruckkninchux raebiybwithieksiyn Method of exhaustion sungekhanamaichinkarhakhapramankhxng p phay withikarkhuxwadphaphhlayehliymkhnadihykwaxyukhangnxkwngklm aelaruphlayehliymkhnadelkkwaxyukhanginwngklm yingcanwndankhxngruphlayehliymephimkhun mnkcaiklekhiyngkbkhxbkhxngwngklmmakyingkhun emuxruphlayehliymmicanwndanthung 96 dan ekhakhanwnkhwamyawkhxngaetladanrwmknaelaaesdngthungkhakhxng p thixyurahwang 3 1 7 praman 3 1429 kb 3 10 71 praman 3 1408 ethiybkbkhathiaethcringkhxng p thipraman 3 1416 ekhayngphisucndwywaphunthikhxngwngklmnnethakb p khunkbkhakalngsxngkhxngrsmikhxngwngklm innganekhiyneruxng On the Sphere and Cylinder xarkhimidisidwanghlkeknthkhxngkhxngcanwncring wakhakniknntid emuxnamabwkekhakbtwexngepncanwnkhrngmakphx camakkwakhaxnntkhxngkhann innganekhiyn Measurement of a Circle xarkhimidisihkharakthisxngkhxng 3 iwwaxyurahwang 265 153 praman 1 7320261 kb 1351 780 praman 1 7320512 odykhathiaethcringkhuxpraman 1 7320508 sungepnkhapramankarthiiklekhiyngmak ekhabxkkhanixxkmaodyimidihkhaxthibaywaichraebiybwithiidinkarkhid withikarthangankhxngxarkhimidisechnnithaih rabuwaekhakalng pkpidwithikarinkarhakhatxb rawkbwaimtxngkarihkhnrunhlngidlwngru aetklbkhuekhyihyxmrbphllphthnnaetodydi xarkhimidisphisucnwa phunthiswnhnungkhxngesnokhngpharaoblainphaphbn ethakb 4 3 khxngrupsamehliyminphaphlang innganekhiyn The Quadrature of the Parabola xarkhimidisphisucnwa phunthiphayitekhtlxmkhxngpharaoblakbesntrnghnungesn mikhaethakb 4 3 ethakhxngphunthisamehliyminekhtediywknnn dngaesdnginrupthangkhwani ekhaxthibayphllphthkhxngpyhanidwyxnukrmerkhakhnitxnntsungmixtraswnrwm 1 4 n 0 4 n 1 4 1 4 2 4 3 43 displaystyle sum n 0 infty 4 n 1 4 1 4 2 4 3 cdots 4 over 3 phcnaerkkhxngxnukrmnikhuxphunthikhxngsamehliym phcnthisxngepnphlrwmkhxngphunthikhxngsamehliym 2 chinthimithanethakbdanprakxbthielkkwa aelaepnechnniiperuxy karphisucnniichkaraeprkhakhxngxnukrmxnntthiidphlrwmekhaikl 1 3 innganekhiyn The Sand Reckoner xarkhimidisthakarkhanwncanwnemdthraythiexkphphsamarthrxngrbid karthaechnnn ekhaidthathaykhxsngektwacanwnkhxngemdthraynnmakcnekinkwacanbid ekhaekhiynwa mibangkhn echnphraecaekol phraecaekolthi 2 oxrskhxngphraecaehiyorthi 2 aehngsirakusa sungkhidwacanwnkhxngemdthraynnmakmaycnepnxnnt aelainkhwamhmaykhxngthraynn khamiidhmaythungthimixyuinsirakusahruxswnthiehluxkhxngsisili aetrwmthungswnthiphbinthxngthinthukhnaehngimwamikhnxyuhruxim inkaraekpyhani xarkhimidisidpradisthrabbinkarnbkhunodyxangxingcak mieriyd khanimacakphasakrikwa murias hmaythungcanwn 10 000 ekhaesnxrabbcanwnaebbhnungodyichkarkhunmieriydkbmieriyd 100 lan aelasrupwacanwnkhxngemdthraythitxngichinkaretimexkphphthnghmdihetm ethakb 8 wicinthileliyn hrux 8 1063taranganekhiynkhxngxarkhimidisekhiyniwin Doric Greek sungepnphasasirakusaobran nganekhiynswnmakimsamarthrxdmathungpccubnehmuxnxyangngankhxngyukhlid tara 7 elmkhxngekhaepnthiruckkdwykarthuknkekhiynkhnxun klawxangthungethann phphphsaehngxelksanedriyphudthung On Sphere Making aelanganxun ekiywkbruphlayehliym khnathithixxnaehngxelksanedriyxangthungickhwamsakhyhnungekiywkbcaknganekhiynchux Catoptricab tlxdchwngchiwitkhxngxarkhimidis ekhathaihngankhxngtnepnthiruckphankarsnthnaxphipraykbnkkhnitsastrkhnxun inxelksanedriy pi kh s 530 sthapnikchawibaesnithnkhnhnungchux xisidxraehngmieltus idrwbrwmnganekhiynkhxngxarkhimidisekhadwykn aelamikarwicarnphlngankhxngxarkhimidiscakyuotesiysaehngxskhalxninkhriststwrrsthi 6 sungthaihphlngankhxngekhaepnthiruckaephrhlay mikaraeplnganekhiynkhxngxarkhimidisipepnphasaxarbikody Thabit ibn Qurra kh s 836 901 aelaphasalatinody Gerard aehngkhriomna kh s 1114 1187 rahwangyukherxenssxngsmikartiphimph Editio Princeps exdichnaerk inkrungebesilemuxpi kh s 1544 ody ochnn aehrewekn odyaesdngnganekhiynkhxngxarkhimidisthnginphasakrikaelalatin pramanpi kh s 1586 kalielox kalielxi khidkhnsmdulkhxngsthitysastrkhxngihlephuxichinkarchngnahnkolhainxakasaelainna odyehnchdwaidrbaerngbndaliccakngankhxngxarkhimidis phlnganthirxdma khaklawxnodngdngkhxngxarkhimidisekiywkbkhan hathiihchnyunsi aelwchncaekhluxnolkih Give me a place to stand and a lever long enough and I will move the world wadwydulyphaphkhxngranab On the Equilibrium of Planes hrux cudsunythwngkhxngranab Gravity of Planes ekhiyniwsxngelm elmaerkmi 15 bthkbscphcn 7 khx swnelmthi 2 mi 10 bth nganekhiynchinni xarkhimidisklawthungkdkhxngkhan odyrabuwa nahnkbnkhancaxyuinsmdulthirayahangcakcudhmunepnxtraswnphkphnkbnahnk xarkhimidisichhlkkarniinkarhathangkhanwnphunthiaelacudsunyklangmwlkhxngwtthurupthrngtang kn sungrwmthungthrngsamehliym siehliymdankhnan aelapharaoblawadwykarwdwngklm On Measurement of the Circle epnngansn prakxbdwy 3 bth ekhiyninrupaebbkarsnthnakbodsiethxusaehngephluesiym phuepnsisykhxngokhnxnaehngsamxs inbththi 2 xarkhimidisaesdngihehnwa kha p pi mikhamakkwa 223 71 aetnxykwa 22 7 twelkhhlngniepntwelkhthithuknamaichepnkhapramankarkhxng p matlxdyukhklang aelayngkhngepnthiniymichknxyuinpccubnemuxtxngkarkhanwnxyangkhraw wadwyesnekliyw On Spirals nganchinnimi 28 bth aelayngkhngklawthungodsithixus taraniklawthungsingthipccubneriykchuxwa wngknhxyxarkhimidis Archimedean spiral nnkhux olkhskhxngcudthiekhluxnthi dwykhwamerwkhngthi iptamaenwesntrng thikalnghmunrxbtwexngxyudwykhngthi n cudid sungaesdngepnkhakhuxndbechingmumidwa r 8 samarthaesdngepnsmkariddngnir a b8 displaystyle r a b theta dd ody a aela b epncanwncring niepntwxyangyukhaerk khxngesnokhngthangkl esnokhngthiekidcakcudekhluxnthi inkhwamehnkhxngnkkhnitsastrchawkrikwadwythrngklmaelathrngkrabxk On the Sphere and the Cylinder ekhiyniwsxngelm odyepnkarekhiynthungodsithixus xarkhimidisekhiynthungphlngansungekhaphakhphumiicmakthisud nnkhuxkhwamsmphnthrahwangthrngklmkbthrngkrabxkthimikhwamsungaelaesnphansunyklangethakn primatrkhxngthrngklmkhux 4 3 pr3 swnprimatrkhxngthrngkrabxkethakb 2pr3 phunthiphiwkhxngthrngklmkhux 4pr2 swnphunthiphiwkhxngthrngkrabxkethakb 6pr2 rwmphunthithanthngsxngdan odythi r khuxrsmikhxngthrngklmaelathrngkrabxknn thrngklmcamiprimanepn 2 3 ethakhxngprimatrthrngkrabxk inkhnaediywknkmiphunthiphiwepn 2 3 ethakhxngphunthiphiwthrngkrabxkdwy miruppnthrngklmaelathrngkrabxktidtngxyuinhlumsphkhxngxarkhimidistamkhakhxkhxngekhaexngwadwythrngkrwy aelathrngklm On Connoids and Spheroids epnnganprakxbdwy 32 bthekhiynthungodsithixus xarkhimidiskhanwnphunthiaelaprimatrkhxngesiywthrngtn thiekidcakkarhmunphakhtdkrwy wngklm wngri pharaobla hrux ihephxrobla rxbaeknkhxngtwexngwadwyethhwtthulxy On Floating Bodies inchwngaerkkhxngtarani xarkhimidisklawthungkdsmdulkhxngkhxngihl hruxsthitysastrkhxngihl aelaphisucnwanacakhngrupthrngepnthrngklmrxb cudsunyklangkhxngaerngonmthwng nixacepnkhwamphyayamxthibaythvsdikhxngnkdarasastrchawkrikrwmsmykbekha echn exrathxsethnis thibxkwaolkmiruprangklm khxngihlinkhwamhmaykhxngxarkhimidisnnimidmiaerngonmthwngintwexng enuxngcakekhatngsmmutithanwamicudxyucudhnungsungthuksingtklngiphaephuxthaihekidrupthrngaebbthrngklminchwngthisxng ekhakhanwntaaehnngsmdulkhxngphakhtdkhxngrupthrngpharaobla sungduehmuxnepnphaphxudmkhtikhxngrupthrngkhxngthxngerux phakhtdkhxngekhabangswncamithanxyuitna aelayxdxyuehnuxna inlksnaediywknkbkarlxytwkhxngphuekhanaaekhng hlkkarkhxngxarkhimidiswadwykarlxytw thukrabuexaiwinnganekhiynchinni odyrabuwawtthuid thicmxyuinkhxngihlimwathnghmdhruxbangswn caprasbkbaerngtanthiethaknkbnahnkkhxngkhxngihlthithukaethnthi aetepnipinthisthangtrngknkham esiywkhxngpharaobla The Quadrature of the Parabola epnnganekhiyn 24 bthekhiynthungodsithixus xarkhimidisichraebiybwithi 2 chnidphisucnwa phunthikhxngswnid khxngpharaoblakbesntrng caethakb 4 3 khxngphunthisamehliymthimiesnthanaelakhwamsungethakbswnesiywnn ekhasamarthphisucnidsaercodykarkhanwnkhaxnukrmerkhakhnitthimiphlrwmthungxnntdwyxtraswn 1 4 O stomachionepnnganprisnachinswn khlaykhlungkbaethnaekrm mitarathiexythungnganlksnanithismburnyingkwa insmudbnthukkhxngxarkhimidis Archimedes palimpsest xarkhimidiskhanwnphunthikhxngchinswn 14 chinthisamarthprakxbknepnrupsiehliymcturs nganwicykhxng dr erwil ents aehngmhawithyalysaetnfxrdthiephyaephrinpi kh s 2003 otaeyngwa xarkhimidisphyayamcabngbxkcanwnwithithichinswnehlanisamarthrwmknepnrupthrngsiehliymctursid dr ents khanwnwakarprakxbchinswnehlaniepnsiehliymcturssamarththaid 17 152 withi hakimnbkarhmunrupaelakarsathxnrupaelwcaidcanwnwithicderiyngthngsin 536 withi prisnaniepntwxyangkaraekpyhainyukherimaerkkhxngkhnitsastrechingkarcdtnkaenidkhxngchuxdngedimkhxngprisnalksnaniyngimchdecnnk bangkwamnmacakkhaphasakrikobranekiywkbkhxhruxkhxhxy khux stomachos stomaxos eriykprisnachnidniwa Ostomachion sungepnkhaprasminphasakrik macakraksphth ὀsteon osteon kraduk aela maxh mache txsu nxkcakni prisnaniyngepnthiruckinchuxwa kraepakhxngxarkhimidis hrux klxngkhxngxarkhimidispyhaeruxngwwkhxngxarkhimidis Archimedes cattle problem kxttohld xifram elssing epnphukhnphbnganniintnchbblaymuxphasakrik prakxbdwybthkwi 44 brrthd thihxngsmudehxrsxk xxkst inemuxng Wolfenbuttel praethseyxrmn emuxpi kh s 1773 epnnganekhiynthungexrathxsethnisaelankkhnitsastrkhnxun inxelksanedriy xarkhimidisthathaykhnehlannihnbcanwnwwthixyuinkhxkstwkhxngphraxathity odyaekpyhacanwncak mipyhalksnaniinrupaebbthiyakkwasungtxnghakhatxbxxkmaepnelkhykkalngsxng phuaekpyhaniidepnkhnaerkkhux ex xmthxr inpi kh s 1880 khatxbthiidepncanwnkhnadihymak khuxpraman 7 760271 x 10206544nkkhanwnthray The Sand Rekoner epntarasn xthibayrabbkhwamkhideruxngcanwnkhxngkrik xarkhimidisnbcanwnkhxngemdthraythicathmcnetmckrwal innganekhiynchinniyngklawthungrabbsuriyatamthvsdidwngxathityepnsunyklangckrwal sungesnxody rwmthungaenwkhidrwmsmyxun ekiywkbkhnadkhxngolk aelarayahangrahwangwtthuthxngfatang xarkhimidisichrabbcanwnthisrangcakkarykkalngkhxngmieriyd aelasrupwacanwnemdthraythicathmckrwalidkhux 8 x 1063 tamrabbcanwnyukhihm incdhmaynaeruxngkhxngnganekhiynni rabuiwwabidakhxngxarkhimidisepnnkdarasastr chuxwa fiediys nkkhanwnthray hrux Psammites epnnganekhiynthiehluxrxdephiyngchinediywthixarkhimidisxphipraythungmummxngdandarasastrkhxngekharaebiybwithiekiywkbthvsdibthklsastr The Method of Mechanical Theorems aetedimechuxknwataranisuyhayipaelw cnkrathngmikarkhnphbsmudbnthukkhxngxarkhimidisinpi kh s 1906 innganekhiynni xarkhimidisichaenwkhidkniknnt aesdngihehnwa karaetkrupphaphhnung xxkepnchinswnelk canwnnbimthwn samarthichhaphunthihruxprimatridxyangir bangthixarkhimidisxacehnwawithikarniyngimekhrngkhrdphx ekhacungichraebiybwithieksiyn method of exhaustion machwyinkarhakhatxb nganekhiynnixyuinrupaebbkhxngcdhmaythisngthungexrathxsethnisaehngxelksanedriy echnediywkb pyhaeruxngwwkhxngxarkhimidisphlnganthisuyhay phlnganeruxng Book of Lemmas hrux Liber Assumptorum epnhnungintarakhxngxarkhimidisekiywkbsdswn 15 prakarkhxngthrrmchatikhxngwngklm saenachudthiekaaekthisudethathiruckknekhiynexaiwinphasaxarbik nkwichakar thi aexl hith aela maraechl khlaektt otaeyngwarupaebbinpccubnniimnacaekhiynkhunodyxarkhimidis ephraamikarxangthungxarkhimidisexngdwy cungnacaepnnganddaeplngthiekidcakphuekhiynkhnxun Lemmas xacepnnganthisrangkhuncakphlngankxnhnanikhxngxarkhimidissungpccubnsuyhayipaelw nxkcakniyngmikarklawxangwa xarkhimidisrucksungichinkarkhanwnphunthikhxngsamehliymcakkhwamyawkhxngdanthngsamc xyangirkdi hlkthanxangxingthiechuxthuxidchinaerkekiywkbsmkarnikepnkhxngehrxnaehngxelksanedriyinkhriststwrrsthi 1smudbnthukkhxngxarkhimidiskhuxprisnacaaenkswn sungpraktinsmudbnthukkhxngxarkhimidis exksarxnoddednthisudthibrrcuphlngankhxngxarkhimidis idaek smudbnthukkhxngxarkhimidis Archimedes Palimpsest ochn ludwik ihebirk sastracarychawednmarkidipeyiymeyuxnkrungkhxnsaetntionepilemuxpi kh s 1906 aelaidtrwcsxbbnthukbnhnngaepha 174 hnathiekhiynkhuninkhriststwrrsthi 13 ekhakhnphbwa mnkhux smudbnthukphalimesst palimpsest khuxexksarthimikarekhiynkhxkhwamsaaelwsaxikthbphlnganekhiynedim odykarkhudhmukcaknganekaxxkaelwnaaephnhnngklbmaichihm sungepnwithikarthiichknxyuthwipinyukhklangephraakradashnngstwmirakhaaephngmak nkprachyinkhriststwrrsthi 10 idtrwcsxbaelayunynwanganekhiynekabnphalimesstehlanikhuxtarakhxngxarkhimidisthiyngimmiikhrruckmakxn aephnhnngstwehlanithukekbrksaiwthihxngsmudpracaxaraminkrungkhxnsaetntionepilepnewlahlayrxypi kxncathukkhayihaeknksasmexkchninrawkhristthswrrs 1920 wnthi 29 tulakhm kh s 1998 mnthuknaxxkpramulkhayipihaekphusuxthiimpraktchuxepnengin 2 lanehriyyshrththibristhpramulkhristis innkhrniwyxrk phayinphalimesstnibrrcutara 7 elm sungrwmthungsaenachudediywthiehluxrxdxyukhxng On Floating Bodies intnchbbphasakrik epnaehlngkhxmulediywethathiruckkhxng The Method of Mechanical Theorems sungsuydasekhyklawxangthungaelaechuxknwasuyhayiptlxdkalaelw karkhnphb Stomachion kphbinphalimesstniechnediywkn phrxmkbkarwiekhraahchudsmburnkhxngprisnathiekhyphbintaraxunkxnhnani pccubnni smudbnthukphalimesstthukekbrksaexaiwthi thiemuxngbltimxr rthaemriaelnd sungcatxngthuktrwcsxbdwykrrmwithithdsxbsmyihmxikhlayaebb echnkartrwcdwyaesngxltraiwoxeltaelaaesngexkseryephuxxankhxkhwamthithukekhiynthbip tarakhxngxarkhimidisthibrrcuxyuinsmudbnthukphalimesstchudni idaek On the Equilibrium of Planes On Spirals Measurement of a Circle On the Sphere and the Cylinder On Floating Bodies The Method of Mechanical Theorems aela Stomachionxnusrnruphlxsaridkhxngxarkhimidis thihxdudawxarechnohld ebxrlin srangodyekxrhard ithexm epidemux kh s 1972phaphehmuxnkhxngxarkhimidisbnehriyyfilds aexngbndwngcnthraehnghnungidrbkartngchuxwa aexngxarkhimidis 29 7 N 4 0 W ephuxepnekiyrtiaekekha nxkcaknimiethuxkekhabndwngcnthraehnghnung chuxwa ethuxkekhaxarkhimidis Montes Archimedes 25 3 N 4 6 W rwmthungdawekhraahnxy sungtngchuxtamchuxkhxngekhadwy ehriyyrangwlfilds sahrbphuprasbkhwamsaercxyangoddedndankhnitsastr slkphaphehmuxnkhxngxarkhimidisiwbnehriyy phrxmkbkarphisucnkhxngekhaekiywkberuxngkhxngthrngklmaelathrngkrabxk khacarukrxb sirsakhxngxarkhimidiskhuxkhaphudkhxngekhasungekhiyniwinphasalatinwa Transire suum pectus mundoque potiri cngyunkhunehnuxtnexngaelakhwaolkiw phaphxarkhimidisyngpraktbndwngtraiprsniyakrkhxngeyxrmnitawnxxk kh s 1973 kris kh s 1983 xitali kh s 1983 nikharakw kh s 1971 sanmarion kh s 1982 aelasepn kh s 1963 khaprakaskhxngxarkhimidiswa yuerka klayepnkhakhwypracarthkhxngaekhlifxreniy odyichinkhwamhmaythixangthungkarkhnphbthxngkhabriewniklorngnasutethxr inpi kh s 1848 xnepncuderimtnyukhkarkhudthxnginaekhlifxreniy khbwnkarekhluxnihwphleruxnaehnghnungsungmiepahmayinkarekhathungkhxmulsukhphaphsaklinrthxxrikxn shrthxemrika ichchuxkhbwnkarwa khbwnkarxarkhimidis Archimedes Movement naodyxditphuwakarrthxxrikxn cxhn khitsehebxrechingxrrthhmayehtu a inbthnakhxng On Spirals thisngthungoxsithusaehngephluesiym xarkhimidisbxkwa hlaypilmslayipnbaetokhnxntay okhnxnaehngsamxsmichiwitxyurahwang 280 220 pikxnkhristkal aesdngwatxnthiekhiynnganehlani xarkhimidiskhngcachraaelw hmayehtu b tarakhxngxarkhimidissungepnthiruckknodyphankarxangthungcakbukhkhlxun idaek On Sphere Making aelaphlnganekiywkbrupthrnghlayehliym sungthukklawthungodyphphphsaehngxelksanedriy Catoptrica phlnganekiywkbaesng klawthungodythixxnaehngxelksanedriy Principles klawthungodysisiphphs aelamikarxthibayrabbcanwnexaiwin The Sand Reckoner On Balances and Levers On Centers of Gravity On the Calendar sahrbphlngankhxngxarkhimidisthihlngehluxrxdmann thi aexl hith ehnwaladbinkarekhiynepndngtxipni On the Equilibrium of Planes I The Quadrature of the Parabola On the Equilibrium of Planes II On the Sphere and the Cylinder I II On Spirals On Conoids and Spheroids On Floating Bodies I II On the Measurement of a Circle The Sand Reckoner hmayehtu c kharl ebncamin bxyexxr A History of Mathematics 1991 ISBN 0 471 54397 7 bnthitchawxahrbbxkerawa mismkarhaphunthithikhlaykn samarthhaphunthisamehliymidcakkhwamyawdanthngsam eriykchuxwa smkarkhxngehrxn k s s a s b s c odythi s khux semiperimeter smkarnixarkhimidisrumakxnaelwhlayrxypikxnehrxnekid bnthitxahrbyngxangthung theorem on the broken chord waepnngankhxngxarkhimidis chawxahrbraynganwaxarkhimidisidphisucnthvsdibthmakmay xangxing Archimedes Death Ray Testing with MythBusters MIT khlngkhxmulekaekbcakaehlngedimemux 2013 06 20 subkhnemux 2007 07 23 Calinger Ronald 1999 A Contextual History of Mathematics Prentice Hall p 150 ISBN 0 02 318285 7 Shortly after Euclid compiler of the definitive textbook came Archimedes of Syracuse ca 287 212 BC the most original and profound mathematician of antiquity Archimedes of Syracuse The MacTutor History of Mathematics archive January 1999 ekbcakaehlngedimemux 20 June 2013 subkhnemux 9 June 2008 O Connor J J Robertson E F February 1996 A history of calculus University of St Andrews cakaehlngedimemux 15 July 2007 subkhnemux 7 August 2007 Bursill Hall Piers com mediadb task view idstr CU MMP PiersBursillHall Itemid 30 Galileo Archimedes and Renaissance engineers sciencelive with the University of Cambridge subkhnemux 2007 08 07 a href wiki E0 B9 81 E0 B8 A1 E0 B9 88 E0 B9 81 E0 B8 9A E0 B8 9A Cite web title aemaebb Cite web cite web a trwcsxbkha url help lingkesiy Walters Art Museum khlngkhxmulekaekbcakaehlngedimemux 2007 09 28 subkhnemux 2007 10 14 Heath T L Works of Archimedes 1897 Plutarch October 1996 Parallel LivesComplete e text from Gutenberg org Project Gutenberg cakaehlngedimemux 20 September 2008 subkhnemux 23 July 2007 O Connor J J and Robertson E F Archimedes of Syracuse University of St Andrews subkhnemux 2007 01 02 a href wiki E0 B9 81 E0 B8 A1 E0 B9 88 E0 B9 81 E0 B8 9A E0 B8 9A Cite web title aemaebb Cite web cite web a CS1 maint multiple names authors list lingk Rorres Chris Death of Archimedes Sources Courant Institute of Mathematical Sciences subkhnemux 2007 01 02 The Death of Archimedes Illustrations math nyu edu New York University cakaehlngedimemux 29 September 2015 subkhnemux 13 December 2017 Rorres Chris Tomb of Archimedes Sources Courant Institute of Mathematical Sciences subkhnemux 2007 01 02 Rorres Chris Tomb of Archimedes Illustrations Courant Institute of Mathematical Sciences subkhnemux 2011 03 15 Rorres Chris Siege of Syracuse Courant Institute of Mathematical Sciences subkhnemux 2007 07 23 Vitruvius De Architectura Book IX paragraphs 9 12 text in English and Latin University of Chicago subkhnemux 2007 08 30 Incompressibility of Water Harvard University subkhnemux 2008 02 27 HyperPhysics Buoyancy Georgia State University subkhnemux 2007 07 23 Rorres Chris The Golden Crown Drexel University subkhnemux 2009 03 24 Carroll Bradley W Archimedes Principle Weber State University subkhnemux 2007 07 23 Rorres Chris The Golden Crown Galileo s Balance Drexel University subkhnemux 2009 03 24 Casson Lionel 1971 Ships and Seamanship in the Ancient World Princeton University Press ISBN 0 691 03536 9 Dalley Stephanie Oleson John Peter Sennacherib Archimedes and the Water Screw The Context of Invention in the Ancient World Technology and Culture Volume 44 Number 1 January 2003 PDF subkhnemux 2007 07 23 a href wiki E0 B9 81 E0 B8 A1 E0 B9 88 E0 B9 81 E0 B8 9A E0 B8 9A Cite web title aemaebb Cite web cite web a CS1 maint multiple names authors list lingk Rorres Chris Archimedes screw Optimal Design Courant Institute of Mathematical Sciences subkhnemux 2007 07 23 An animation of an Archimedes screw SS Archimedes wrecksite eu subkhnemux 2011 01 22 Rorres Chris Archimedes Claw Illustrations and Animations a range of possible designs for the claw Courant Institute of Mathematical Sciences subkhnemux 2007 07 23 Carroll Bradley W Archimedes Claw watch an animation Weber State University subkhnemux 2007 08 12 Hippias 2 cf Galen On temperaments 3 2 who mentions pyreia torches Anthemius of Tralles On miraculous engines 153 Westerman John Wesley A Compendium of Natural Philosophy 1810 Chapter XII Burning Glasses Online text at Wesley Center for Applied Theology cakaehlngedimemux 2007 10 12 subkhnemux 2007 09 14 00 html promoid googlep Archimedes Weapon Time Magazine November 26 1973 subkhnemux 2007 08 12 a href wiki E0 B9 81 E0 B8 A1 E0 B9 88 E0 B9 81 E0 B8 9A E0 B8 9A Cite news title aemaebb Cite news cite news a trwcsxbkha url help lingkesiy Bonsor Kevin How Wildfires Work HowStuffWorks subkhnemux 2007 07 23 Fuels and Chemicals Auto Ignition Temperatures TV Review MythBusters 8 27 President s Challenge subkhnemux 2010 12 18 Rorres Chris The Law of the Lever According to Archimedes Courant Institute of Mathematical Sciences subkhnemux 2010 03 20 Clagett Marshall 2001 Greek Science in Antiquity Dover Publications ISBN 978 0 486 41973 2 subkhnemux 2010 03 20 xangody in Synagoge Book VIII Dougherty F C Macari J Okamoto C Society of Women Engineers khlngkhxmulekaekbcakaehlngedimemux 2007 07 18 subkhnemux 2007 07 23 a href wiki E0 B9 81 E0 B8 A1 E0 B9 88 E0 B9 81 E0 B8 9A E0 B8 9A Cite web title aemaebb Cite web cite web a CS1 maint multiple names authors list lingk Technology Museum of Thessaloniki khlngkhxmulekaekbcakaehlngedimemux 2007 09 05 subkhnemux 2007 09 14 Cicero De re publica 1 xiv 21 thelatinlibrary com subkhnemux 2007 07 23 Cicero De re publica Complete e text in English from Gutenberg org Project Gutenberg subkhnemux 2007 09 18 Rorres Chris Spheres and Planetaria Courant Institute of Mathematical Sciences subkhnemux 2007 07 23 Ancient Moon computer revisited BBC News November 29 2006 subkhnemux 2007 07 23 Plutarch Extract from Parallel Lives fulltextarchive com subkhnemux 2009 08 10 Kaye R W Archimedean ordered fields web mat bham ac uk subkhnemux 2009 11 07 Quoted in Heath T L Works of Archimedes Dover Publications ISBN 0 486 42084 1 Carroll Bradley W The Sand Reckoner Weber State University subkhnemux 2007 07 23 Encyclopedia of ancient Greece By Wilson Nigel Guy p 77 ISBN 0 7945 0225 3 2006 Brown University Library khlngkhxmulekaekbcakaehlngedimemux 2007 08 08 subkhnemux 2007 07 23 Van Helden Al The Galileo Project Hydrostatic Balance Rice University subkhnemux 2007 09 14 Heath T L The Works of Archimedes 1897 The unabridged work in PDF form 19 MB Archive org subkhnemux 2007 10 14 Kolata Gina December 14 2003 In Archimedes Puzzle a New Eureka Moment The New York Times subkhnemux 2007 07 23 Ed Pegg Jr November 17 2003 The Loculus of Archimedes Solved Mathematical Association of America subkhnemux 2008 05 18 Rorres Chris Archimedes Stomachion Courant Institute of Mathematical Sciences subkhnemux 2007 09 14 Graeco Roman Puzzles Gianni A Sarcone and Marie J Waeber subkhnemux 2008 05 09 Krumbiegel B and Amthor A Das Problema Bovinum des Archimedes Historisch literarische Abteilung der Zeitschrift Fur Mathematik und Physik 25 1880 pp 121 136 153 171 Calkins Keith G Archimedes Problema Bovinum Andrews University subkhnemux 2007 09 14 khlngkhxmulekaekbcakaehlngedimemux 2007 08 11 subkhnemux 2007 07 23 Archimedes Book of Lemmas subkhnemux 2007 08 07 O Connor J J Robertson E F February 1996 A history of calculus University of St Andrews cakaehlngedimemux 15 July 2007 subkhnemux 7 August 2007 Miller Mary K March 2007 Smithsonian Magazine khlngkhxmulekaekbcakaehlngedimemux 2008 01 19 subkhnemux 2008 01 24 Rare work by Archimedes sells for 2 million CNN October 29 1998 cakaehlngedimemux 2008 05 16 subkhnemux 2008 01 15 X rays reveal Archimedes secrets BBC News August 2 2006 subkhnemux 2007 07 23 Friedlander Jay and Williams Dave Oblique view of Archimedes crater on the Moon NASA subkhnemux 2007 09 13 a href wiki E0 B9 81 E0 B8 A1 E0 B9 88 E0 B9 81 E0 B8 9A E0 B8 9A Cite web title aemaebb Cite web cite web a CS1 maint multiple names authors list lingk NASA khlngkhxmulekaekbcakaehlngedimemux 2007 10 12 subkhnemux 2007 09 13 Fields Medal International Mathematical Union cakaehlngedimemux 2007 07 01 subkhnemux 2007 07 23 Rorres Chris Stamps of Archimedes Courant Institute of Mathematical Sciences subkhnemux 2007 08 25 California State Capitol Museum khlngkhxmulekaekbcakaehlngedimemux 2007 10 12 subkhnemux 2007 09 14 khlngkhxmulekaekbcakaehlngedimemux 2010 11 13 subkhnemux 2011 04 09 aehlngkhxmulxunwikimiediykhxmmxnsmisuxthiekiywkhxngkb xarkhimidis wikikhakhmmikhakhmekiywkb xarkhimidis xarkhimidis 2012 01 15 thi ewyaebkaemchchin odythwchchy dulysucrit ephyaephrkhrngaerkinnitysar Update ithy The Archimedes Palimpsest project at The Walters Art Museum in Baltimore Maryland The Mathematical Achievements and Methodologies of Archimedes 2004 12 09 thi ewyaebkaemchchin Article examining how Archimedes may have calculated the square root of 3 2010 02 06 thi ewyaebkaemchchin at MathPages Archimedes On Spheres and Cylinders at MathPages Photograph of the Sakkas experiment in 1973 Testing the Archimedes steam cannon 2010 03 29 thi ewyaebkaemchchin Stamps of Archimedes 2010 10 18 thi ewyaebkaemchchin