ทฤษฎีสัมพัทธภาพทั่วไป เป็นทฤษฎีความโน้มถ่วงซึ่งอัลเบิร์ต ไอน์สไตน์พัฒนาระหว่างปี 1907 ถึง 1915 มีใจความว่า ผลของความโน้มถ่วงที่สังเกตได้ระหว่างมวลเกิดจากการบิดงอ (warp) ของปริภูมิ-เวลา
ต้นคริสต์ศตวรรษที่ 20 กฎความโน้มถ่วงสากลของนิวตันเป็นที่ยอมรับกันมานานกว่าสองร้อยปีว่าเป็นคำอธิบายแรงโน้มถ่วงระหว่างมวลที่สมเหตุสมผล ในแบบจำลองของนิวตัน ความโน้มถ่วงเป็นผลของแรงดึงดูดระหว่างวัตถุฟากฟ้าขนาดมหึมา แม้นิวตันประสบปัญหาจากธรรมชาติที่ยังไม่ทราบของแรงนั้น แต่ทฤษฎีแรงโน้มถ่วงของนิวตันกลายมาเป็นกรอบพื้นฐานที่ประสบความสำเร็จอย่างยิ่งในการอธิบายการเคลื่อนที่ของวัตถุฟากฟ้า
การทดลองและการสังเกตแสดงว่าคำอธิบายความโน้มถ่วงของไอน์สไตน์อธิบายหลายปรากฏการณ์ที่กฎของนิวตันไม่อธิบาย เช่น ค่าผิดปกติเล็กน้อยในวงโคจรของดาวพุธและดาวเคราะห์อื่น สัมพัทธภาพทั่วไปยังทำนายผลใหม่ของความโน้มถ่วง เช่น คลื่นความโน้มถ่วง เลนส์ความโน้มถ่วง และผลของความโน้มถ่วงต่อเวลาที่เรียก (gravitational time dilation) การทำนายเหล่านี้จำนวนมากได้รับการยืนยันจากการทดลองหรือการสังเกต ล่าสุดได้แก่ คลื่นความโน้มถ่วง ส่วนการทำนายอื่น ๆ เป็นหัวข้อการวิจัยที่กำลังดำเนินอยู่
มีการพัฒนาสัมพัทธภาพทั่วไปเป็นเครื่องมือสำคัญในฟิสิกส์ดาราศาสตร์สมัยใหม่ โดยเป็นรากฐานของความเข้าใจปัจจุบันของหลุมดำ ซึ่งเป็นบริเวณของปริภูมิซึ่งผลความโน้มถ่วงเข้มเสียจนแม้แต่แสงก็ออกมาไม่ได้ ความโน้มถ่วงที่เข้มของหลุมดำคาดว่าทำให้เกิดการปล่อยรังสีอย่างเข้มโดยวัตถุทางดาราศาสตร์บางชนิด (เช่น นิวเคลียสดาราจักรกัมมันต์หรือ) สัมพัทธภาพทั่วไปยังเป็นส่วนหนึ่งของกรอบแบบจำลองจักรวาลวิทยาบิกแบงมาตรฐาน
แม้สัมพัทธภาพทั่วไปมิใช่ทฤษฎีความโน้มถ่วงสัมพัทธนิยมทฤษฎีเดียว แต่เป็นทฤษฎีที่เรียบง่ายที่สุดซึ่งเข้ากันกับข้อมูลการทดลอง กระนั้น ยังมีคำถามที่ไม่มีคำตอบอยู่จำนวนหนึ่ง คำถามหลักมูลที่สุดคือ สัมพัทธภาพทั่วไปจะสามารถเข้าได้กับกฎกลศาสตร์ควอนตัมได้อย่างไรเพื่อผลิตทฤษฎีความโน้มถ่วงเชิงควอนตัมที่สมบูรณ์และต้องกันในตนเอง
จากทฤษฎีสัมพัทธภาพพิเศษสู่สัมพัทธภาพทั่วไป
ในเดือนกันยายน 1905 อัลเบิร์ต ไอน์สไตน์จัดพิมพ์ทฤษฎีสัมพัทธภาพพิเศษของตน ซึ่งทำให้กฎการเคลื่อนที่ของนิวตันเข้าได้กับ (อันตรกิริยาระหว่างวัตถุกับประจุไฟฟ้า) สัมพัทธภาพพิเศษนำกรอบใหม่มาให้วิชาฟิสิกส์ทั้งหมดโดยเสนอมโนทัศน์ใหม่ปริภูมิและเวลา ทฤษฎีฟิสิกส์ซึ่งเป็นที่ยอมรับกันในเวลานั้นบางทฤษฎีไม่ต้องกันกับกรอบนั้น ตัวอย่างสำคัญคือ ทฤษฎีความโน้มถ่วงของนิวตันซึ่งอธิบายความดึงดูดระหว่างกันระหว่างวัตถุอันเนื่องจากมวลของมัน
นักฟิสิกส์หลายคนรวมทั้งไอน์สไตน์ค้นหาทฤษฎีซึ่งจะทำให้กฎความโน้มถ่วงของนิวตันเข้าได้กับทฤษฎีสัมพัทธภาพพิเศษ มีเพียงทฤษฎีของไอน์สไตน์เท่านั้นที่ได้รับการพิสูจน์แล้วว่าสอดคล้องกับการทดลองและการสังเกต เพื่อเข้าใจความคิดพื้นฐานของทฤษฎี ในการนี้การติดตามความคิดของไอน์สไตน์ระหว่างปี 1907 ถึง 1915 จะให้รายละเอียด ตั้งแต่การทดลองทางความคิดเบื้องต้นของเขาอันเกี่ยวข้องกับผู้สังเกตในการตกอิสระสู่ทฤษฎีความโน้มถ่วงเรขาคณิตสมบูรณ์ของเขา
หลักการสมมูล
บุคคลในลิฟต์ที่ตกอย่างอิสระประสบภาวะไร้น้ำหนัก วัตถุจะลอยอยู่โดยไร้การเคลื่อนไหวหรือเคลื่อนไหวด้วยความเร็วคงที่ เนื่องจากทุกสิ่งในลิฟต์ตกลงไปด้วยกัน จึงไม่สามารถสังเกตผลของความโน้มถ่วงได้ ด้วยวิธีนี้ประสบการณ์ของผู้สังเกตในการตกอย่างอิสระจึงแยกไม่ได้กับผู้สังเกตในอวกาศซึ่งอยู่ห่างจากแหล่งความโน้มถ่วงสำคัญใด ๆ ผู้สังเกตเหล่านั้นเป็นผู้สังเกตเฉื่อยที่ไอน์สไตน์อธิบายไว้ในทฤษฎีสัมพัทธภาพพิเศษของเขา คือ ผู้สังเกตซึ่งแสงเดินทางเป็นเส้นตรงด้วยความเร็วคงที่
ไอน์สไตน์ตั้งสมมติฐานว่าประสบการณ์คล้ายกันของผู้สังเกตไร้น้ำหนักและผู้สังเกตเฉื่อยในทฤษฎีสัมพัทธภาพพิเศษเป็นตัวแทนของคุณสมบัติมูลฐานของความโน้มถ่วง และเขายกให้ข้อนี้เป็นหลักหมุดของทฤษฎีสัมพัทธภาพทั่วไปของเขา โดยสรุปไว้ในหลักการสมมูลของเขา กล่าวโดยคร่าว ๆ คือ หลักการนี้ระบุว่าบุคคลในลิฟต์ที่ตกอย่างอิสระไม่สามารถบอกได้ว่าตนกำลังตกอย่างอิสระ ทุกการทดลองที่มีสิ่งแวดล้อมตกอย่างอิสระดังนี้ให้ผลลัพธ์เช่นเดียวกับผู้สังเกตขณะพักหรือกำลังเคลื่อนที่เป็นระเบียบในอวกาศที่อยู่ห่างจากแหล่งความโน้มถ่วงใด ๆ
ความโน้มถ่วงและความเร่ง
ผลของความโน้มถ่วงส่วนใหญ่หายไปเมื่ออยู่ในการตกอย่างอิสระ แต่ผลที่ดูเหมือนผลของความโน้มถ่วงนั้นสามารถทำให้เกิดได้ในกรอบอ้างอิงเร่ง (accelerated frame of reference) ผู้สังเกตในห้องปิดไม่สามารถแยกแยะได้ว่าสองกรณีด้านล่างกรณีใดเป็นจริง
- วัตถุกำลังตกสู่พื้น เพราะห้องนั้นกำลังอยู่บนผิวโลกและวัตถุนั้นกำลังถูกความโน้มถ่วงดึงลงมา
- วัตถุกำลังตกสู่พื้น เพราะห้องนั้นอยู่บนจรวดในอวกาศ ซึ่งมีความเร่ง 9.81 m/s2 และอยู่ห่างจากแหล่งกำเนิดความโน้มถ่วงใด ๆ วัตถุนั้นกำลังถูกดึงลงพื้นด้วย "แรงเฉื่อย" เดียวกันกับที่ผลักผู้ขับรถที่มีความเร่งไปชนกับเบาะที่นั่งด้านหลังบุคคลนั้น
ในทางกลับกัน ผลใด ๆ ที่สังเกตได้ในกรอบอ้างอิงเร่งควรสังเกตได้ในสนามความโน้มถ่วงที่มีความเข้มพอ ๆ กันได้เช่นกัน หลักการนี้ทำให้ไอน์สไตน์สามารถพยากรณ์ผลของความโน้มถ่วงใหม่ ๆ หลายประการได้ในปี 1907 ดังที่จะอธิบายในส่วนถัดไป
ผู้สังเกตในกรอบอ้างอิงเร่งจะต้องใช้สิ่งที่นักฟิสิกส์เรียกว่า แรงเทียม เพื่อใช้อธิบายความเร่งที่เขาและวัตถุรอบตัวเขาประสบ ตัวอย่างหนึ่งเช่น แรงที่ผลักผู้ขับรถที่มีความเร่งไปยังเบาะนั่งด้านหลังบุคคลนั้นดังที่ได้กล่าวไปแล้ว อีกตัวอย่างหนึ่งคือแรงที่บุคคลรู้สึกว่ากำลังดึงแขนขึ้นและออกจากตัวเมื่อกำลังพยายามหมุนเหมือนลูกข่าง วิจารณญาณของไอน์สไตน์มีว่า โดยหลักพื้นฐานแล้วแรงดึงซึ่งคงที่และเคยชินของสนามความโน้มถ่วงของโลกก็เป็นเฉกเช่นแรงเทียมเหล่านี้ ขนาดปรากฏของแรงเทียมดูเหมือนเป็นสัดส่วนกับมวลของวัตถุใด ๆ ที่แรงนั้นกระทำเสมอ ตัวอย่างเช่น เบาะนั่งของผู้ขับส่งแรงเพียงพอให้เร่งผู้ขับในอัตราเดียวกับรถยนต์นั้น ไอน์สไตน์จึงเสนอว่าวัตถุในสนามความโน้มถ่วงควรได้รับแรงความโน้มถ่วงเป็นสัดส่วนกับมวลของมัน ดังที่กล่าวไว้ในกฎความโน้มถ่วงของนิวตัน
ผลลัพธ์ในวิชาฟิสิกส์
ในปี 1907 ก่อนไอน์สไตน์คิดค้นทฤษฎีสัมพัทธภาพทั่วไปเสร็จสิ้นแปดปี กระนั้น เขาสามารถพยากรณ์แบบใหม่ที่ทดสอบได้ซึ่งอาศัยจุดตั้งต้นสำหรับพัฒนาทฤษฎีใหม่ของเขา คือ หลักการสมมูล
ผลใหม่อย่างแรก คือ การเลื่อนความถี่เชิงโน้มถ่วงของแสง พิจารณาผู้สังเกตสองคนบนยานจรวดที่มีความเร่ง บนยานดังกล่าวมีมโนทัศน์ธรรมชาติ "ขึ้น" และ "ลง" อยู่ โดยทิศทางที่ยานเร่งไปนั้นเรียก "ขึ้น" และวัตถุที่ไม่ถูกผูกยึดจะเร่งไปในทิศทางตรงข้าม หรือตก "ไปด้านล่าง" สันนิษฐานว่าผู้สังเกตคนหนึ่งอยู่ "สูงกว่า" อีกคนหนึ่ง เมื่อผู้สังเกตคนที่อยู่ต่ำกว่าส่งสัญญาณแสงแก่ผู้สังเกตที่อยู่สูงกว่า ความเร่งจะทำให้แสงเลื่อนไปทางแดงซึ่งตรงกับที่อาจคำนวณได้จากสัมพัทธภาพพิเศษ ผู้สังเกตคนที่สองจะวัดได้แสงความถี่ต่ำกว่าผู้สังเกตคนแรก ในทางกลับกัน แสงที่ส่งจากผู้สังเกตที่อยู่สูงกว่าจะเลื่อนไปทางน้ำเงิน คือ เลื่อนไปยังความถี่สูงขึ้น ไอน์สไตน์แย้งว่าการเลื่อนของความถี่ดังกล่าวจะต้องสังเกตได้ในสนามความโน้มถ่วงเช่นกัน ปรากฏการณ์ดังกล่าวพรรณนาในภาพด้านซ้ายมือ ซึ่งแสดงคลื่นแสงที่ค่อย ๆ เลื่อนไปทางแดงดังเช่นที่แสงประพฤติระหว่างเคลื่อนที่ขึ้นบนต่อความเร่งของความโน้มถ่วง ผลนี้มีการยืนยันในการทดลองแล้วดังอธิบายด้านล่าง
การเลื่อนความถี่จากความโน้มถ่วงนี้สมนัยกับการขยายขนาดของเวลาจากความโน้มถ่วง เนื่องจากผู้สังเกต "ที่อยู่สูงกว่า" วัดคลื่นแสงเดียวกันมีความถี่ต่ำกว่าผู้สังเกตที่อยู่ "ต่ำกว่า" เวลาจะต้องผ่านไปเร็วกว่าสำหรับผู้สังเกตที่อยู่สูงกว่าด้วย ฉะนั้น เวลาจึงผ่านไปช้ากว่าสำหรับผู้สังเกตที่อยู่ต่ำกว่าในสนามความโน้มถ่วง
สำคัญที่ต้องเน้นย้ำว่าสำหรับผู้สังเกตแต่ละคน ไม่มีการเปลี่ยนแปลงการไหลของเวลาที่สังเกตได้สำหรับเหตุการณ์หรือกระบวนการซึ่งเป็นขณะพักในกรอบอ้างอิงของผู้สังเกตนั้น ไข่ห้านาทีที่จับเวลาด้วยนาฬิกาของผู้สังเกตแต่ละคนจะมีเนื้ออย่างเดียวกัน เมื่อเวลาผ่านไปหนึ่งปีตามเวลาทั้งสองเรือน ผู้สังเกตทั้งสองจะมีอายุมากขึ้นตามเวลานั้นด้วย กล่าวสั้น ๆ คือ นาฬิกาแต่ละเรือนสอดคล้องอย่างไร้ที่ติกับกระบวนการทั้งหมดที่เกิดขึ้นในบริเวณใกล้เคียงของนาฬิกานั้น จะสามารถสังเกตว่าเวลาสำหรับผู้สังเกตที่อยู่ต่ำกว่าเดินช้ากว่าผู้สังเกตที่อยู่สูงกว่าเฉพาะเมื่อมีการเปรียบเทียบนาฬิการะหว่างผู้สังเกตหลายคนเท่านั้น ผลนี้เล็กน้อยมาก แต่ก็มีการยื่นยันแล้วในการทดลองหลายครั้ง ดังอธิบายด้านล่าง
ในทำนองเดียวกัน ไอน์สไตน์พยากรณ์การเบนแสงจากความโน้มถ่วง กล่าวคือ ในสนามความโน้มถ่วง แสงถูกเบนไปในทิศทางลง ในทางปริมาณ ผลเฉลยของไอน์สไตน์คลาดเคลื่อนไปสองเท่า การแปลงที่ถูกต้องต้องอาศัยสูตรที่มีความสมบูรณ์มากขึ้นจากทฤษฎีสัมพัทธภาพทั่วไป ไม่เพียงอาศัยเฉพาะหลักการสมมูล
ผลน้ำขึ้นลง
ความสมมูลระหว่างผลความโน้มถ่วงและความเฉื่อยไม่เป็นส่วนหนึ่งของทฤษฎีความโน้มถ่วงที่สมบูรณ์ เมื่อต้องใช้อธิบายความโน้มถ่วงใกล้ตำแหน่งของบุคคลบนผิวโลก สังเกตว่ากรอบอ้างอิงของบุคคลนั้นไม่ใช่การตกอย่างอิสระ ฉะนั้นจึงคาดว่าจะมีแรงเสียดทาน จะให้คำอธิบายที่เหมาะสม แต่กรอบอ้างอิงการตกอิสระบนฝั่งหนึ่งของโลกไม่สามารถอธิบายได้ว่าเหตุใดบุคคลที่อยู่ฝั่งตรงข้ามของโลกถูกแรงโน้มถ่วงดึงในทิศทางตรงกันข้าม
หากจะอธิบายให้ง่ายขึ้น แรงเดียวกันนี้ยังปรากฏในเทห์ฟ้าสองเทห์ซึ่งตกลงสู่ลงเคียงกัน ในกรอบอ้างอิงซึ่งเป็นการตกอิสระข้างเทห์ทั้งสองนี้ จะดูเหมือนว่าทั้งสองจะลอยอยู่โดยไร้น้ำหนัก แต่แท้จริงแล้วไม่ใช่ เทห์ทั้งสองนี้ไม่ได้ตกลงในทิศทางเดียวกันพอดี แต่ตกลงสู่จุดจุดหนึ่งในปริภูมิ กล่าวคือ ศูนย์กลางความโน้มถ่วงของโลก ผลทำให้การเคลื่อนที่ของเทห์แต่ละเทห์บางส่วนเคลื่อนที่เข้าหากัน ในสิ่งแวดล้อมขนาดเล็ก เช่น ลิฟต์ที่ตกอย่างอิสระ ความเร่งโดยสัมพัทธ์นี้มีค่าเล็กน้อยมาก แต่นักดิ่งพสุธาที่อยู่ฝั่งตรงข้ามของโลก ผลนี้จะมีค่ามาก ผลต่างของแรงดังนี้ยังมีส่วนให้เกิดน้ำขึ้นลงในมหาสมุทร ปรากฏการณ์นี้จึงได้ชื่อว่า "ผลน้ำขึ้นลง"
ความสมมูลระหว่างความเฉื่อยและควาามโน้มถ่วงไม่สามารถอธิบายผลน้ำขึ้นลงได้ ไม่สามารถความผันแปรในสนามความโน้มถ่วงนี้ หากจะอธิบายความผันแปรในสนามโน่มถ่วง จำเป็นต้องมีทฤษฎีซึ่งอธิบายวิธีที่สสาร (เช่น มวลใหญ่อย่างโลก) มีผลต่อสิ่งแวดล้อมเฉื่อยโดยรอบมวลนั้น
จากความเร่งถึงเรขาคณิต
ในการสำรวจความสมมูลของความโน้มถ่วงและความเร่งตลอดจนบทบาทของแรงน้ำขึ้นลง ไอน์สไตน์ค้นพบแนวเทียบหลายอย่างกับเรขาคณิต ตัวอย่างได้แก่การเปลี่ยนผ่านจากกรอบอ้างอิงเฉื่อย (ซึ่งอนุภาคอิสระวิ่งด้วยแรงเฉื่อยตามวิถีเส้นตรง ณ ความเร็วคงที่) ไปเป็นกรอบอ้างอิงหมุน (ซึ่งจำเป็นต้องคิดพจน์เพิ่มเติมที่สมนัยกับแรงเสียดทานเพื่ออธิบายการเคลื่อนที่ของอนุภาค) นี่เป็นแนวเทียบการเปลี่ยนผ่านจากระบบพิกัดคาร์ทีเซียน (ซึ่งเส้นพิกัดเป็นเส้นตรง) เป็นระบบพิกัดเชิงเส้นโค้ง (ซึ่งเส้นพิกัดไม่จำเป็นต้องเป็นเส้นตรง)
แนวเทียบที่ลึกกว่าเกี่ยวข้องกับแรงน้ำขึ้นลงทีมีคุณสมบัติของพื้นผิวเรียกความโค้ง สำหรับสนามความโน้มถ่วง การมีหรือไม่มีแรงน้ำขึ้นลงตัดสินว่าอิทธิพลของความโน้มถ่วงสามารถกำจัดได้ด้วยการเลือกกรอบอ้างอิงการตกอย่างอิสระหรือไม่ ในทำนองเดียวกัน การมีหรือไม่มีความโค้งตัดสินว่าพื้นผิวนั้นเทียบเท่ากับระนาบหนึ่งหรือไม่ ในฤดูร้อนปี 1912 ไอน์สไตน์ได้รับบันดาลใจจากแนวเทียบเหล่านี้ และค้นหาการบัญญัติความโน้มถ่วงแบบเรขาคณิต
วัตถุมูลฐานในวิชาเรขาคณิตซึ่งได้แก่ จุด เส้นตรง และสามเหลี่ยม เดิมนิยามในปริภูมิสามมิติหรือในผิวสองมิติ ในปี 1907 แฮร์มัน มิงค็อฟสกี อดีตศาตราจารย์คณิตศาสตร์ของไอน์สไตน์ที่พอลิเทคนิคกลางสวิส ริเริ่มการคิดค้นทางเรขาคณิตซึ่งทฤษฎีสัมพัทธภาพพิเศษของไอน์สไตน์โดยที่เรขาคณิตนั้นไม่คิดเฉพาะปริภูมิเท่านั้นแต่คิดเวลาด้วย เอนทิตีพื้นฐานของเรขาคณิตใหม่นี้ คือ ปริภูมิ-เวลาสี่มิติ วงโคจรของเทห์ที่เคลื่อนที่เป็นเส้นโค้งในปริภูมิ-เวลา วงโคจรของเทห์ที่เคลื่อนที่ด้วยความเร็วคงที่โดยไม่เปลี่ยนทิศทางสมนัยกับเส้นตรง
สำหรับพื้นผิว การวางนัยทั่วไปจากเรขาคณิตของระนาบหรือพื้นผิวเรียบไปเป็นพื้นผิวโค้งโดยทั่วไปมีการอธิบายในต้นคริสต์ศตวรรษที่ 19 โดยคาร์ล ฟรีดริช เกาส์ คำบรรยายนี้มีการวางนัยทั่วไปไปยังปริภูมิที่มีมติสูงกว่าในรูปนัยนิยมทางคณิตศาสตร์ที่แบร์นฮาร์ท รีมันเผยแพร่ในคริสต์ทศวรรษ 1850 ด้วยความช่วยเหลือของเรขาคณิตแบบรีมัน ไอน์สไตน์บัญญัติคำบรรยายความโน้มถ่วงทางเรขาคณิตโดยที่ปริภูมิ-เวลาของมิงค็อฟสกีถูกแทนที่ด้วยปริภูมิ-เวลาโค้งบิดเบี้ยว เช่นเดียวกับที่พื้นผิวโค้งเป็นนัยทั่วไปของพื้นผิวระนาบธรรมดา มีการใช้ระนาบฝังตัว (Embedding Diagram) เพื่อพรรณนาปริภูมิ-เวลาโค้งในบริบทการศึกษา
หลังไอน์สไตน์ทราบความสมเหตุสมผลของแนวเทียบเรขาคณิตดังนี้แล้ว ไอน์สไตน์ยังต้องใช้เวลาอีกสามปีจึงค้นพบหินหลักมุมที่หายไปสำหรับทฤษฎีของเขา นั่นคือ สมการอธิบายว่าสสารมีอิทธิพลต่อความโค้งของปริภูมิ-เวลาอย่างไร หลังบัญญัติสมการที่ปัจจุบันเรียก สมการของไอน์สไตน์ (หรือจะกล่าวให้แม่นยำยิ่งขึ้นว่าสมการสนามของไอน์สไตน์) แล้ว เขานำเสนอทฤษฎีความโน้มถ่วงใหม่นี้ในสมัยประชุมหลายสมัยของวิทยาลัยวิทยาศาสตร์ปรัสเซียในปลายปี 1915 จนนำไปสู่การนำเสนอสุดท้ายของเขาในวันที่ 25 พฤศจิกายน 1915
เรขาคณิตกับความโน้มถ่วง
ทฤษฎีสัมพัทธภาพเชิงเรขาคณิตของไอน์สไตน์สรุปได้โดยถอดความจากจอห์น วีลเลอร์ (John Wheeler) ดังนี้ ปริภูมิ-เวลาบอกวิธีเคลื่อนที่แก่สสาร สสารบอกวิธีโค้งแก่ปริภูมิ-เวลา ความหมายของประโยคนี้มีการกล่าวถึงในสามส่วนนับจากนี้ ซึ่งสำรวจการเคลื่อนที่ของสิ่งที่เรียกอนุภาคทดสอบ ตรวจสอบว่าคุณสมบัติใดของสสารเป็นบ่อเกิดของความโน้มถ่วง และสุดท้ายนำเสนอสมการของไอน์สไตน์ ซึ่งโยงคุณสมบัติของสสารเหล่านี้เข้ากับความโค้งของปริภูมิ-เวลา
การพินิจสนามความโน้มถ่วง
ในการทำแผนที่อิทธิพลความโน้มถ่วงของเทห์ (body) จะมีประโยชน์หากคิดถึงสิ่งที่นักฟิสิกส์เรียกโพรบ (probe) หรือ คือ อนุภาคที่ได้รับอิทธิพลจากความโน้มถ่วง แต่ยังเล็กและเบาจนไม่ต้องสนใจผลความโน้มถ่วงของมันเอง เมื่อปราศจากความโน้มถ่วงและแรงภายนอกอื่น อนุภาคทดสอบเคลื่อนเป็นเส้นตรงด้วยความเร็วคงที่ ในภาษาปริภูมิ-เวลา การเคลื่อนที่นี้เทียบเท่าการกล่าวว่าอนุภาคทดสอบเคลื่อนที่ตามเวิลด์ไลน์ (world line) ตรงในปริภูมิ-เวลา เมื่อมีความโน้มถ่วง ปริภูมิ-เวลาเป็นหรือมี และในปริภูมิ-เวลาโค้งอาจไม่มีเวิลด์ไลน์ตรงอยู่ แต่อนุภาคทดสอบเคลื่อนที่ตามแนวเรียก จีออเดสิก (geodesic) ที่ "ตรงเท่าที่เป็นไปได้" นั่นคือ แนวนี้ตามวิถีสั้นสุดระหว่างจุดเริ่มต้นและสิ้นสุด เมื่อพิจารณาความโค้งด้วย
อุปมาง่าย ๆ ดังนี้ ในวิชาภูมิมาตรศาสตร์ วิทยาศาสตร์การวัดขนาดและรูปทรงของโลก จีออเดสิก (geodesic, มาจากภาษากรีก "geo" แปลว่า โลก และ "daiein" แปลว่า แบ่ง) คือ เส้นทางสั้นสุดระหว่างสองจุดบนผิวโลก เส้นทางนี้โดยประมาณก็คือเซกเมนต์หนึ่งของวงกลมใหญ่ เช่น เส้นลองจิจูดหรือเส้นศูนย์สูตร แน่นอนว่าวิถีเหล่านี้มิใช่เส้นตรง เพราะเส้นต้องไปตามความโค้งของผิวโลก แต่เส้นเหล่านี้ตรงเท่าที่เป็นไปได้ในเงื่อนไขบังคับนี้
คุณสมบัติภูมิมาตรศาสตร์ต่างจากคุณสมบัติของเส้นตรง ตัวอย่างเช่น ในระนาบหนึ่ง เส้นขนานจะไม่มีทางมาบรรจบกัน แต่ไม่จริงสำหรับจีออเดสิกบนผิวโลก ตัวอย่างเช่น เส้นลองจิจูดขนานที่เส้นศูนย์สูตร แต่มีส่วนร่วมที่ขั้ว ทำนองเดียวกัน เวิลด์ไลน์ของอนุภาคทดสอบในการตกอย่างอิสระเป็นจีออเดสิกของปริภูมิ-เวลาหรือเป็นเส้นตรงที่สุดที่เป็นไปได้ในปริภูมิ-เวลา แต่ยังมีข้อแตกต่างสำคัญระหว่างทั้งสองและเส้นตรงจริง ๆ เท่านั้นที่สามารถวาดได้ในปริภูมิ-เวลาไร้ความโน้มถ่วงของสัมพัทธภาพพิเศษ ในสัมพัทธภาพพิเศษ จีออเดสิกขนานยังขนานกันอยู่ ในสนามความโน้มถ่วงที่มีผลน้ำขึ้นลง โดยทั่วไปข้อนี้จะไม่เป็นจริง ตัวอย่างเช่น หากวัตถุสองวัตถุที่ทีแรกอยู่ในภาวะพักโดยสัมพัทธ์ต่อกัน แต่แล้วถูกปล่อยในสนามความโน้มถ่วงของโลก วัตถุทั้งสองจะเคลื่อนเข้าหากันขณะที่ตกสู่ศูนย์กลางของโลก
วัตถุในชีวิตประจำวัน (คน รถยนต์ บ้านหรือแม้แต่ภูเขา) มีมวลน้อยนิดเมื่อเทียบกับดาวเคราะห์หรือเทห์ดาราศาสตร์อื่น เมื่อกล่าวถึงวัตถุในชีวิตประจำวัน กฎว่าด้วยพฤติกรรมของอนุภาคทดสอบเพียงพออธิบายสิ่งที่เกิด ที่สำคัญคือ ในการเบนอนุภาคทดสอบจากวิถีจีออเดสิกของมันจะต้องมีแรงภายนอกมากระทำ เก้าอี้ที่มีผู้นั่งอยู่มีแรงพุ่งขึ้นภายนอกมากระทำป้องกันมิให้บุคคลนั้นตกอิสระสู่ศูนย์กลางของโลกฉะนั้นจึงเป็นไปตามจีออเดสิก ซึ่งหากไม่มีสสารกั้นระหว่างเขากับศูนย์กลางของโลกเขาก็จะตกลงเบื้องล่าง ด้วยวิธีนี้ สัมพัทธภาพทั่วไปอธิบายประสบการณ์แรงโน้มถ่วงประจำวันบนผิวโลกว่ามิใช่เป็นแรงดึงลงของแรงโน้มถ่วง แต่เป็นการผลักขึ้นของแรงภายนอก แรงเหล่านี้เบนเทห์ทั้งหมดที่อยู่บนผิวโลกจากจีออเดสิกที่ควรเป็นตามปกติ สำหรับวัตถุสสารซึ่งต้องคิดอิทธิพลความโน้มถ่วงของมันด้วย กฎการเคลื่อนที่จะซับซ้อนกว่าของอนุภาคทดสอบอยู่บ้าง แต่ข้อที่ว่าปริภูมิ-เวลาบอกวิธีเคลื่อนที่แก่สสารยังเป็นจริงอยู่
แหล่งของความโน้มถ่วง
ในคำอธิบายความโน้มถ่วงของนิวตัน แรงโน้มถ่วงเกิดจากสสาร หรือจะกล่าวให้แม่นตรงกว่านั้น เกิดจากคุณสมบัติเฉพาะหนึ่งของวัตถุกายภาพ คือ มวล ในทฤษฎีของไอน์สไตน์และทฤษฎีความโน้มถ่วงที่สัมพันธ์กัน ความโค้งทุกจุดในปริภูมิ-เวลาก็เกิดจากว่ามีสสารอะไรอยู่ ซึ่งในที่นี้มวลเป็นคุณสมบัติสำคัญเช่นเดียวกันในการกำหนดอิทธิพลความโน้มถ่วงของสสาร แต่ในทฤษฎีความโน้มถ่วงสัมพัทธนิยม มวลไม่สามารถเป็นแหล่งของความโน้มถ่วงเพียงแหล่งเดียว สัมพัทธภาพโยงมวลกับพลังงาน และพลังงานกับโมเมนตัม
ความสมมูลระหว่างมวลกับพลังงาน ดังที่แสดงโดยสูตร E = mc2 เป็นผลลัพธ์ที่โด่งดังที่สุดของสัมพัทธภาพพิเศษ ในสัมพัทธภาพ มวลและพลังงานเป็นวิธีการอธิบายปริมาณทางกายภาพหนึ่ง ๆ ที่ต่างกันสองวิธี หากระบบกายภาพหนึ่งมีพลังงาน ระบบนั้นจะมีมวลสมนัย และระบบกายภาพที่มีมวลก็จะมีพลังงานสมนัยด้วย โดยเฉพาะอย่างยิ่ง คุณสมบัติทั้งหมดของเทห์ที่สัมพันธ์กับพลังงาน เช่น อุณหภูมิหรือพลังงานยึดเหนี่ยวของระบบ เช่น นิวเคลียสหรือโมเลกุล ประกอบเป็นมวลของเทห์นั้น ฉะนั้นจึงประพฤติตนเป็นแหล่งของความโน้มถ่วง
ในสัมพัทธภาพพิเศษ พลังงานมีความเชื่อมโยงใกล้ชิดกับโมเมนตัม ดังเช่นที่ปริภูมิและเวลาในทฤษฎีนั้นต่างเป็นส่วนหนึ่งของเอนทิตีครอบคลุมกว่าที่เรียก ปริภูมิ-เวลา พลังงานและโมเมนตัมเป็นเพียงส่วนหนึ่งในปริมาณสี่มิติรวมที่นักฟิสิกส์เรียก (four-momentum) ผลคือ หากพลังงานเป็นแหล่งของความโน้มถ่วง โมเมนตัมก็เป็นแหล่งด้วย ข้อนี้เป็นจริงสำหรับปริมาณที่เกี่ยวข้องโดยตรงกับพลังงานและโมเมนตัม กล่าวคือ ความดันภายในและ เมื่อคิดรวมกัน ในสัมพัทธภาพทั่วไป มวล พลังงาน โมเมนตัม ความดันและความตึงเป็นแหล่งของความโน้มถ่วง เป็นวิธีที่สสารบอกปริภูมิ-เวลาว่าจะโค้งอย่างไร ในการบัญญัติทางคณิตศาสตร์ของทฤษฎี ปริมาณเหล่านี้ทั้งหมดเป็นส่วนหนึ่งของปริมาณทางกายภาพครอบคลุมกว่าที่เรียก (energy–momentum tensor)
สมการของไอน์สไตน์
สมการของไอน์สไตน์เป็นหัวใจของสัมพัทธภาพทั่วไป สมการเหล่านี้ให้ประมวลความสัมพันธ์ระหะว่างเรขาคณิตปริภูมิ-เวลาและคุณสมบัติของสสารที่แม่นยำโดยใช้ภาษาคณิตศาสตร์ ที่เป็นรูปธรรมกว่านั้น มีการประมวลสูตรเหล่านี้โดยใช้มโนทัศน์เรขาคณิตรีมันน์ ซึ่งคุณสมสบัติเรขาคณิตของปริภูมิ (หรือปริภูมิ-เวลา) อธิบายโดยคุณสมบัติที่เรียกว่า เมตริก (metric) เมตริกเข้ารหัสสารสนเทศที่จำเป็นต้องคำนวณความคิดระยะทางและองศาเรขาคณิมูลฐานในปริภูมิ (หรือปริภูมิ-เวลา) โค้ง
ผิวทรงกลมคล้ายผิวโลกให้ตัวอย่างอย่างง่าย ตำแหน่ง ณ จุดใด ๆ บนผิวสามารถอธิบายได้ด้วยสองพิกัด คือ ละติจูดและลองติจูดภูมิศาสตร์ ต่างจากพิกัดคาร์ทีเชียนของระนาบ ผลต่างของพิกัดไม่เท่ากับระยะทางบนผิว ดังที่แสดงในแผนภาพด้านขวามือ สำหรับผู้ที่อยู่ ณ เส้นศูนย์สูตร การเคลื่อนไปทางตะวันตก 30 องศาลองติจูด (เส้นสีม่วงแดง) สมนัยกับระยะทางประมาณ 3,300 กิโลเมตร อีกด้านหนึ่ง ผู้ที่อยู่ละติจูด 55 องศา การเคลื่อนไปทางตะวันตก 30 องศาลองติจูด (เส้นสีน้ำเงิน) กินระยะทางเพียง 1,900 กิโลเมตร ฉะนั้นพิกัดจึงไม่ให้สารสนเทศเพียงพออธิบายเรขาคณิตของผิวทรงกลม หรือเรขาคณิตของปริภูมิหรือปริภูมิ-เวลาใด ๆ ที่ซับซ้อนกว่านั้น สารสนเทศนั้นคือสิ่งที่เข้ารหัสในเมตริกอย่างแน่นอน ซึ่งเป็นฟังก์ชันที่นิยาม ณ แต่ละจุดของผิว (หรือปริภูมิ หรือปริภูมิ-เวลา) และสัมพันธ์ผลต่างของพิกัดกับผลต่างของระยะทาง ปริมาณอื่นใดซึ่งให้ความสนใจในเรขาคณิต เช่น ความยาวของความโค้งใด ๆ หรือองศาที่เส้นโค้งสองเส้นตัดกัน สามารถคำนวณได้จากฟังก์ชันเมตริกนี้
ฟังก์ชันเมตริกและอัตราการเปลี่ยนจากจุดหนึ่งไปอีกจุดหนึ่งสามารถใช้นิยามปริมาณทางเรขาคณิตได้ เรียก ซึ่งอธิบายว่าปริภูมิหรือปริภูมิ-เวลาโค้งอย่างไรแม่นตรงที่แต่ละจุด ในสัมพัทธภาพทั่วไป เมตริกและเทนเซอร์ความโค้งรีมันน์เป็นปริมาณที่นิยามที่แต่ละจุดในปริภูมิ-เวลา ดังที่ได้กล่าวไปแล้ว ปริมาณสสารของปริภูมิ-เวลานิยามอีกปริมาณหนึ่ง เทนเซอร์พลังงาน–โมเมนตัม T และหลักการที่ว่า "ปริภูมิ-เวลาบอกวิธีเคลื่อนที่แก่สสาร และสสารบอกวิธีโค้งแก่ปริภูมิ-เวลา" หมายความว่า ปริมาณเหล่านี้ต้องสัมพันธ์กัน ไอน์สไตน์สร้างสูตรความสัมพันธ์นี้โดยใช้เทนเซอร์ความโค้งรีมันน์และเมตริกเพื่อนิยามปริมาณทางเรขาคณิตอีกปริมาณหนึ่ง G ซึ่งบัดนี้เรียก ซึ่งอธิบายวิธีโค้งของปริภูมิ-เวลาบางลักษณะ สมการของไอน์สไตน์ระบุว่า
กล่าวคือ ในพหุคูณค่าคงตัวหนึ่ง ปริมาณ G (ซึ่งวัดความโค้ง) เข้าสมการกับปริมาณ T (ซึ่งวัดปริมาณสสาร) ในที่นี้ G คือ ค่าคงตัวความโน้มถ่วงของความโน้มถ่วงนิวตัน และ c เป็นความเร็วแสงจากสัมพัทธภาพพิเศษ
สมการนี้มักเรียกเป็นพหูพจน์ว่า สมการของไอน์สไตน์ เนื่องจากปริมาณ G และ T ต่างกำหนดจากหลายฟังก์ชันของพิกัดปริภูมิ-เวลา และสมการต่าง ๆ เข้าสมการกับฟังก์ชันส่วนประกอบเหล่านี้ ผลเฉลยของสมการเหล่านี้อธิบายเรขาคณิตเฉพาะของปริภูมิ-เวลา ตัวอย่างเช่น ผลเฉลยชวาร์ซชิลด์ (Schwarzschild solution) อธิบายเรขาคณิตรอบ ๆ มวลทรงกลมไม่หมุน เช่น ดาวฤกษ์หรือหลุมดำ ขณะที่ผลเฉลยเคอร์อธิบายหมุนดำที่หมุน กระนั้น ผลเฉลยอื่นสามารถอธิบายคลื่นความโน้มถ่วงหรือเอกภพที่กำลังขยายในกรณีของผลเฉลยฟรีดมันน์–เลแม็ทร์–โรเบิร์ตสัน–วอล์กเกอร์ ผลเฉลยง่ายที่สุด คือ ปริภูมิ-เวลามิงค็อฟสกีไม่โค้ง คือ ปริภูมิ-เวลาที่อธิบายด้วยสัมพัทธภาพพิเศษ
การทดลอง
ไม่มีทฤษฎีวิทยาศาสตร์ใดเป็นจริงโดยโต้แย้งไม่ได้ ทฤษฎีแต่ละอย่างเป็นแบบจำลองซึ่งจำเป็นต้องตรวจสอบด้วยการทดลอง กฎความโน้มถ่วงของนิวตันเป็นที่ยอมรับเพราะคิดคำนวณการเคลื่อนที่ของดาวเคราะห์และดวงจันทร์ในระบบสุริยะโดยมีความแม่นยำพอสมควร เมื่อความแม่นยำของการวัดเชิงทดลองค่อย ๆ พัฒนาดีขึ้น จึงเริ่มมีการสังเกตข้อแตกต่างในการพยากรณ์ของนิวตันบ้าง และข้อแตกต่างเหล่านี้สามารถอธิบายได้ด้วยทฤษฎีสัมพัทธภาพทั่วไป ในทำนองเดียวกัน การพยากรณ์ของทฤษฎีสัมพัทธภาพทั่วไปจะต้องมีการตรวจสอบด้วยการทดลองด้วย และไอน์สไตน์เองประดิษฐ์การทดลองสามอย่างซึ่งปัจจุบันเรียกการทดสอบทฤษฎีคลาสสิก ดังนี้
- ความโน้มถ่วงของนิวตันพยากรณ์ว่าวงโคจรซึ่งดาวเคราะห์เดี่ยว ๆ ที่วนรอบดาวฤกษ์ทรงกลมพอดีควรเป็นวงรี ทฤษฎีของไอน์สไตน์พยากรณ์เส้นโค้งที่ซับซ้อนกว่านั้น คือ ดาวเคราะห์ประพฤติเสมือนว่ากำลังเดินทางอยู่รอบวงรีวงหนึ่ง แต่ในขณะเดียวกันวงรีทั้งวงกำลังหมุนช้า ๆ รอบดาวฤกษ์ด้วย ในแผนภาพทางขวามือ วงรีที่พยากรณ์โดยความโน้มถ่วงแบบนิวตันแสดงด้วยสีแดง และวงโคจรบางส่วนที่ไอน์สไตน์พยากรณ์แสดงด้วยสีน้ำเงิน สำหรับดาวเคราะห์ที่โคจรรอบดวงอาทิตย์ การเบี่ยงเบนจากวงโคจรของนิวตันเรียก การเลื่อนจุดใกล้ดวงอาทิตย์มากที่สุดผิดธรรมดา (anomalous perihelion shift) การวัดผลนี้ครั้งแรก สำหรับดาวพุธ ย้อนไปถึงปี 1859 ผลลัพธ์ที่แม่นยำที่สุดสำหรับดาวพุธและดาวเคราะห์อื่นจนถึงปัจจุบันอาศัยการวัดซึ่งมีการดำเนินการระหว่างปี 1966 ถึง 1990 โดยใช้กล้องโทรทรรศน์วิทยุ ทฤษฎีสัมพัทธภาพทั่วไปทำนายการเลื่อนจุดใกล้ดวงอาทิตย์มากที่สุดผิดธรรมดาสำหรับดาวเคราะห์ทุกดวงซึ่งสามารถวัดค่าดังกล่าวได้อย่างแม่นยำ (ได้แก่ ดาวพุธ ดาวศุกร์และโลก)
- สัมพันธภาพทั่วไประบุว่า แสงไม่เดินทางเป็นเส้นตรงเมื่อแผ่ในสนามความโน้มถ่วง แต่แสงกลับมีการเบนเมื่อมีเทห์ขนาดมหึมา โดยเฉพาะอย่างยิ่ง แสงดาวมีการเบนเมื่อเฉียดดวงอาทิตย์ ทำให้ตำแหน่งของดาวฤกษ์ดูเหมือนเลื่อนขึ้น 1.75 ฟิลิปดาหรืออาร์กวินาที (1 ฟิลิปดาเท่ากับ 1/3600 ขององศา) ในกรอบของความโน้มถ่วงแบบนิวตัน สามารถให้เหตุผลแบบวิทยาการศึกษาสำนึกซึ่งนำไปสู่การเบนแสงโดยกึ่งหนึ่งของปริมาณตามสัมพัทธภาพทั่วไป การพยากรณ์ที่ต่างกันสามารถทดสอบได้โดยสังเกตดาวฤกษ์ที่อยู่ใกล้ดวงอาทิตย์ระหว่างสุริยุปราคา ด้วยวิธีนี้ คณะสำรวจแอฟริกาตะวันตกของบริเตนในปี 1919 ที่มีอาเธอร์ เอ็ดดิงตันเป็นผู้นำ ยืนยันว่าการพยากรณ์ของไอน์สไตน์ถูกต้อง และการพยากรณ์ของนิวตันผิด โดยการสังเกตสุริยุปราคาเดือนพฤษภาคม 1919 ผลลัพธ์ของเอ็ดดิงตันนั้นไม่ได้แม่นยำมากนัก การสังเกตการเบนแสงของเควซาร์ที่ห่างไกลจากดวงอาทิตย์ในเวลาต่อมา ซึ่งใช้เทคนิคดาราศาสตร์วิทยุที่มีความแม่นยำสูง ยืนยันว่าผลลัพธ์ของเอ็ดดิงตันมีความแม่นยำดีกว่าอย่างสำคัญ (การวัดดังกล่าวครั้งแรกมีตั้งแต่ปี 1967 ส่วนการวิเคราะห์อย่างครอบคลุมล่าสุดมาจากปี 2004)
- ปอนด์และเร็บกาเป็นผู้สังเกตการเลื่อนไปทางแดงของความโน้มถ่วงในห้องปฏิบัติการครั้งแรกในปี 1959 นอกจากนี้ยังพบในการวัดทางฟิสิกส์ดาราศาสตร์ ซึ่งมีครั้งเด่น ๆ จากแสงที่หลบออกจากดาวแคระขาวซิริอุสบี ผลการขยายขนาดของเวลาจากความโน้มถ่วงที่สัมพันธ์กันนั้นวัดได้จากนาฬิกาอะตอมที่กำลังเคลื่อนย้ายไปที่ความสูงระหว่างหลายสิบถึงหลายหมื่นกิโลเมตร (โดยเฮเฟเลและคีตลิงในปี 1971 การวัดที่แม่นยำที่สุดในปัจจุบันวัดโดยกราวิตีโพรบ เอ ที่ปล่อยในปี 1976)
ในบรรดาการทดสอบเหล่านี้ มีเพียงการเคลื่อนที่ใกล้ดวงอาทิตย์มากที่สุดของดาวพุธเท่านั้นที่ทราบกันก่อนการเผยแพร่ครั้งสุดท้ายซึ่งสัมพัทธภาพทั่วไปของไอน์สไตน์ในปี 1916 การยืนยันการพยากรณ์ของเขาด้วยการทดลองภายหลัง โดยเฉพาะอย่างยิ่งการวันการเบนของแสงจากดวงอาทิตย์ครั้งแรกในปี 1919 ทำให้ไอน์สไตน์ได้รับชื่อเสียงในระดับนานาชาติ การทดลองทั้งสามนี้ทำให้การยอมรับสัมพัทธภาพทั่วไปเหนือกว่าทฤษฎีของนิวตันชอบด้วยเหตุผล และทางเลือกของสัมพัทธภาพทั่วไปอีกหลายทฤษฎีที่มีการเสนอไปพร้อมกัน
การทดสอบสัมพัทธภาพทั่วไปเพิ่มเติมยังได้แก่ การวัดอย่างแม่นยำซึ่งผลชาปีโรหรือการหน่วงเวลาจากความโน้มถ่วงสำหรับแสง ซึ่งมีการวัดล่าสุดในปี 2002 โดยยานอวกาศกัสซีนี–เฮยเคินส์ ชุดการทดสอบหนึ่งมุ่งเน้นผลที่ทำนายจากสัมพัทธภาพทั่วไปสำหรับพฤติกรรมของไจโรสโคปที่เคลื่อนที่ผ่านอวกาศ ผลเหล่านี้ผลหนึ่ง จีออเดสิกพรีเซสชัน (geodetic precession) มีการทดสอบด้วยการทดลองพิสัยเลเซอร์ดวงจันทร์ หรือการวัดวงโคจรของดวงจันทร์ที่มีความแม่นยำสูง การทดสอบอีกอย่างหนึ่งซึ่งเกี่ยวข้องกับมวลที่กำลังโคจร เรียก เฟรมแดรกกิง (frame-dragging) ผลจีออเดสิกและเฟรมแดรกกิงมีการทดสอบแล้วด้วยการทดลองดาวเทียมกราวิตีโพรบบีซึ่งปล่อยในปี 2004 โดยผลลัพธ์ยืนยันว่าสัมพัทธภาพมีความแม่นยำอยู่ภายใน 0.5% ถึง 15% ตามลำดับ ในเดือนธันวาคม 2008
ด้วยมาตรฐานจักรวาล ความโน้มถ่วงตลอดระบบสุริยะมีอ่อน เนื่องจากผลต่างระหว่างการพยากรณ์ของทฤษฎีไอน์สไตน์และนิวตันจะเห็นผลมากที่สุดเมื่อความโน้มถ่วงเข้ม นักฟิสิกส์จึงมีความสนใจมานานในการทดสอบผลของสัมพัทธภาพต่าง ๆ ในสภาพแวดล้อมที่มีสนามความโน้มถ่วงเข้มโดยเปรียบเทียบ จนเป็นไปได้ด้วยการสังเกตพัลซาร์คู่อย่างแม่นยำ ในระบบดาวฤกษ์ดังกล่าว ดาวนิวตรอนที่อัดแน่นอย่างสูงสองดวงโตจรรอบกันและกัน มีอย่างน้อยดวงหนึ่งเป็นพัลซาร์ วัตถุทางดาราศาสตร์ที่ปล่อยลำคลื่นวิทยุอย่างแน่น ลำคลื่นดังกล่าวมาถึงโลกด้วยระยะห่างสม่ำเสมอมาก คล้ายกับที่ลำแสงประภาคารที่หมุนอยู่หมายความว่าผู้สังเกตจะเห็นประภาคารกระพริบ และสามารถสังเกตได้ประหนึ่งชุดพัลส์ที่มีความสม่ำเสมอสูง สัมพัทธภาพทั่วไปทำนายความผันแปรที่จำเพาะจากความสม่ำเสมอของพัลส์วิทยุนี้ ตัวอย่างเช่น บางครั้งเมื่อคลื่นวิทยุผ่านเข้าใกล้ดาวนิวตรอนอีกดวงหนึ่ง คลื่นควรเบนไปด้วยผลของสนามความโน้มถ่วงดาวฤกษ์ รูปแบบพัลส์ที่สังเกตได้นั้นมีความใกล้เคียงกับที่สัมพัทธภาพทั่วไปทำนายไว้อย่างน่าประทับใจ
ชุดการสังเกตจำเพาะหนึ่งมีความสัมพันธ์กับการประยุกต์เชิงปฏิบัติที่เป็นประโยชน์อย่างเห็นได้ชัด กล่าวคือ ระบบนำทางด้วยดาวเทียมอย่างระบบกำหนดตำแหน่งบนโลกซึ่งใช้ทั้งการระบุตำแหน่งอย่างแม่นยำและการจับเวลา ระบบดังกล่าวอาศัยนาฬิกาอะตอมสองชุด คือ นาฬิกาที่อยู่บนดาวเทียมที่โคจรรอบโลก และนาฬิกาอ้างอิงที่ตั้งอยู่บนผิวโลก สัมพัทธภาพทั่วไปพยากรณ์ว่านาฬิกาสองชุดนี้ควรเดินด้วยอัตราต่างกันเล็กน้อย เนื่องจากการเคลื่อนที่ที่ต่างกัน (อันเป็นผลที่พยากรณ์ไว้ตามสัมพัทธภาพพิเศษแล้ว) และตำแหน่งที่ต่างกันในสนามความโน้มถ่วงของโลก เพื่อรับประกันความแม่นยำของระบบ นาฬิกาบนดาวเทียมจะช้าลงด้วยปัจจัยสัมพัทธภาพ หรือมีการทำให้ปัจจัยนั้นเป็นส่วนหนึ่งของอัลกอริทึมการประเมิน ฉะนั้น การทดสอบความแม่นยำของระบบ (โดยเฉพาะอย่างยิ่งการวัดอย่างถี่ถ้วนมากซึ่งเป็นส่วนหนึ่งของบทนิยามเวลาสากลเชิงพิกัด) เป็นข้อพิสูจน์ชัดเจนของความสมเหตุสมผลของการพยากรณ์สัมพัทธภาพ
มีการทดสอบอย่างอื่นจำนวนหนึ่งที่พิสูจน์ความถูกต้องของหลักกาารสมมูลฉบับต่าง ๆ สำหรับการกล่าวอย่างเข้มงวด การวัดการขยายขนาดของเวลาจากความโน้มถ่วงทั้งหมดเป็นการทดสอบฉบับอ่อนของหลักการนั้น ไม่ใช่การทดสอบสัมพัทธภาพทั่วไป จนถึงปัจจุบัน สัมพัทธภาพทั่วไปผ่านการทดสอบเชิงสังเกตทั้งหมด
การประยุกต์ทางฟิสิกส์ดาราศาสตร์
แบบจำลองที่ยึดสัมพัทธภาพทั่วไปมีบทบาทสำคัญในวิชาฟิสิกส์ดาราศาสตร์ ความสำเร็จของแบบจำลองเหล่านี้ยิ่งเป็นหลักฐานความถูกต้องของทฤษฎี
เลนส์ความโน้มถ่วง
ด้วยแสงมีการเบนในสนามความโน้มถ่วง จึงเป็นไปได้ที่แสงของวัตถุที่ห่างไกลมาถึงผู้สังเกตในวิถีตั้งแต่สองวิถีขึ้นไป ตัวอ่ยางเช่น แสงของวัตถุที่อยู่ห่างไกลมากอย่างควาซาร์สามารถผ่านตาด้านหนึ่งของดาราจักรขนาดมหึมาและมีการเลี้ยวเบนเล็กน้อยเพื่อมาถึงผู้สังเกตบนโลก ขณะที่แสงผ่านด้านตรงข้ามของดาราจักรเดียวกันนั้นก็มีการเลี้ยวเบนเช่นกนั จึงมาถึงผู้สังเกตเดียวกันจากทิศทางต่างไปเล็กน้อย ผลคือ ผู้สังเกตคนนั้นจะเห็นวัตถุดาราศาสตร์หนึ่งในจุดสองจุดบนท้องฟ้า โฟกัสชนิดนี้ทราบกันดีว่าพบในเลนส์ตา ฉะนั้นผลจากความโน้มถ่วงนี้จึงเรียก เลนส์ความโน้มถ่วง
ดาราศาสตร์เชิงสังเกตการณ์ใช้ผลของเลนส์เป็นเครื่องมือสำคัญในการอนุมานคุณสมบัติของวัตถุเลนส์ แม้ในกรณีที่วัตถุนั้นไม่สามารถเห็นได้โดยตรง รูปทรงของภาพจากเลนส์ให้สารสนเทศเกี่ยวกับการกระจายมวลที่เป็นสาเหตุของการเบนแสง โดยเฉพาะอย่างยิ่ง เลนส์ความโน้มถ่วงเป็นทางหนึ่งในการวัดการกระจายของสสารมืด ซึ่งไม่มีแสงแต่สามารถสังเกตได้เฉพาะจากผลความโน้มถ่วงของมัน การประยุกต์ที่น่าสนใจเป็นพิเศษได้แก่การสังเกตขนาดใหญ่ ที่ที่มวลจากเลนส์แผ่ออกเป็นบริเวณกว้างสำคัญในเอกภพที่สังเกตได้ และสามารถใช้ให้ได้มาซึ่งสารสนเทศเกี่ยวกับคุณสมบัติขนาดใหญ่และวิวัฒนาการของจักรวาลนี้
คลื่นความโน้มถ่วง
คลื่นความโน้มถ่วง (gravitational wave) ซึ่งเป็นผลสืบเนื่องโดยตรงอย่างหนึ่งของทฤษฎีของไอน์สไตน์ เป็นการบิดเบี้ยวของเรขาคณิตที่ส่งผ่านด้วยความเร็วแสง และสามารถคิดเสมือนเป็นริ้วคลื่นในปริภูมิ-เวลาได้ ทั้งนี้ ไม่ควรสับสนกับคลื่นโน้มถ่วง (gravity wave) ของพลศาสตร์ของไหล ซึ่งเป็นมโนทัศน์อีกเรื่องหนึ่ง
ในเดือนกุมภาพันธ์ 2016 ทีมแอดแวนซ์ไลโกประกาศว่าสังเกตคลื่นคนวามโน้มถ่วงโดยตรงจากการรวมหลุมดำได้
สำหรับการสังเกตโดยอ้อม ผลของคลื่นความโน้มถ่วงพบได้ในการสังเกตระบบดาวฤกษ์คู่บางระบบ ดาวฤกษ์คู่ดังกล่าวโคจรรอบกัน และขณะที่โคจรรอบกันนั้นก็ค่อย ๆ เสียพลังงานโดยแผ่คลื่นความโน้มถ่วงออกมา สำหรับดาวฤกษ์ธรรมดาอย่างดวงอาทิตย์ การเสียพลังงานนี้จะเล็กน้อยเกินไปจนตรวจไม่พบ แต่การเสียพลังงานนี้สังเกตได้ในปี 1974 ในพัลซาร์คู่ชื่อ PSR1913+16 ในระบบดังกล่าว ดาวฤกษ์ที่โคจรรอบกันดวงหนึ่งเป็นพัลซาร์ จึงมีผลลัพธ์สองประการ คือ หนึ่ง พัลซาร์เป็นวัตถุหนาแน่นยิ่งยวดที่เรียก ดาวนิวตรอน ที่การปล่อยคลื่นความโน้มถ่วงมีความเข้มกว่าดาวฤกษ์ธรรมดา และสอง พัลซาร์แผ่ลำรังสีแม่เหล็กไฟฟ้าแคบ ๆ จากขั้วแม่เหล็กของมัน เมื่อพัลซาร์หมุน ลำรังสีจะกวาดผ่านโลก ซึ่งจะเห็นลำดังกล่าวเป็นชุดพัลส์วิทยุสม่ำเสมอดุจเรือในทะเลเห็นแสงกะพริบสม่ำเสมอจากแสงที่หมุนในประภาคาร รูปแบบพัลส์วิทยุที่สม่ำเสมอนี้ทำหน้าที่เสมือนเป็น "นาฬิกา" ที่แม่นยำสูง สามารถใช้กะเวลาคาบการโคจรของดาวฤกษ์คู่ได้ และมีการตอบสนองอย่างไวต่อการบิดเบี้ยวของปริภูมิ-เวลาในละแวกติดกับมัน
ผู้ค้นพบ PSR1913+16 รัสเซล ฮัลส์และโจเซฟ เทย์เลอร์ได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี 1993 นับแต่นั้น มีการค้นพบพัลซาร์คู่อื่นอีกหลายระบบ การค้นพบที่มีประโยชน์สูงสุดได้แก่ระบบที่ดาวทั้งสองดวงเป็นพัลซาร์ เพราะจะให้การทดสอบที่แม่นยำของสัมพัทธภาพทั่วไป
ปัจจุบันมีเครื่องตรวจจับคลื่นความโน้มถ่วงบนพื้นดินจำนวนหนึ่งดำเนินการอยู่ และภารกิจปล่อยเครื่องตรวจจับบนอวกาศ ไลซา (LISA) กำลังอยู่ระหว่างการพัฒนา โดยมีภารกิจก่อนหน้า (ไลซาพาธไฟน์เดอร์) ซึ่งมีการปล่อยในปี 2015 การสังเกตคลื่นความโน้มถ่วงสามารถใช้เพื่อให้ได้สารสนเทศเกี่ยวกับวัตถุเนื้อแน่นอย่างดาวนิวตรอนและหลุมดำได้ และยังใช้เพื่อสอบหาสภาพของเอกภพช่วงแรกเศษเสี้ยววินาทีหลังบิกแบง
หลุมดำ
สัมพัทธภาพทั่วไปพยากรณ์ว่าเมื่อมวลกระจุกอยู่ในบริเวณปริภูมิที่มีเนื้อแน่นเพียงพอจะเกิดหลุมดำ หลุมดำเป็นบริเวณของปริภูมิที่ผลความโน้มถ่วงเข้มเสียจนแสงก็หนีออกมาไม่ได้ คิดกันว่าหลุมดำบางชนิดเป็นขั้นสุดท้ายในวิวัฒนาการของดาวฤกษ์ขนาดมหึมา อีกด้านหนึ่ง มีการสันนิษฐานว่าหลุมดำมวลยวดยิ่งที่มีมวลหลายล้านถึงหลายพันล้านเท่าของดวงอาทิตย์อยู่ในใจกลางของดาราจักรส่วนใหญ่ และมีบทบาทสำคัญในแบบจำลองปัจจุบันวิธีการก่อกำเนิดดาราจักรในช่วงหลายพันล้านปีที่ผ่านมา
สสารที่ตกลงสู่วัตถุเนื้อแน่นเป็นกลไกที่มีประสิทธิภาพที่สุดกลไกหนึ่งสำหรับการปลดปล่อยพลังงานในรูปการแผ่รังสี และสสารที่ตกลงสู่หลุมดำเชื่อว่าเป็นตัวการให้เกิดปรากฏการณ์ทางดาราศาสตร์ที่สว่างที่สุดปรากฏการณ์หนึ่งเท่าที่จินตนาการได้ ตัวอย่างสิ่งที่น่าสนใจอย่างยิ่งโดดเด่นสำหรับนักดาราศาสตร์ได้แก่ควาซาร์และนิวเคลียสดาราจักรกัมมันต์ชนิดอื่น ภายใต้ภาวะที่ถูกต้อง สสารที่ตกลงสะสมอยู่รอบหลุมดำสามารถนำไปสู่การก่อกำเนิดเจ็ต (jet) ซึ่งเป็นลำสสารรวมปลิวออกสู่อวกาศด้วยความเร็วเกือบเท่าความเร็วแสง
มีคุณสมบัติหลายประการที่ทำให้หลุมดำเป็นบ่อเกิดของคลื่นความโน้มถ่วงที่มีโอกาสเป็นไปได้มากที่สุด เหตุผลหนึ่งคือหลุมดำเป็นวัตถุเนื้อแน่นที่สุดที่สามารถโคจรรอบกันและกันเป็นส่วนหนึ่งของระบบดาวคู่ได้ ผลคือ คลื่นความโน้มถ่วงที่ปลดปล่อยออกมาจากระบบดังกล่าวจะเข้มเป็นพิเศษ อีกเหตุผลหนึ่งสืบเนื่องจากสิ่งที่เรียกว่าทฤษฎีบทความเป็นได้อย่างเดียวของหลุมดำ คือเมื่อเวลาผ่านไปหลุมดำจะยังมีเฉพาะคุณลักษณะแตกต่างน้อยที่สุด (ทฤษฎีบทเหล่านี้ได้ชื่อว่า ทฤษฎี "ไร้ขน") โดยไม่ขึ้นอยู่กับรูปทรงเรขาคณิตตั้งต้น ตัวอย่างเช่น ในระยะยาว การยุบตัวของลูกบาศก์สสารในทางทฤษฎีจะไม่ส่งผลให้เกิดหลุมดำทรงลูกบาศก์ แต่หลุมดำที่เกิดขึ้นจากไม่แตกต่างกับหลุมดำที่เกิดจากการยุบตัวของมวลทรงกลม ในการเปลี่ยนผ่านรูปทรงกลม หลุมดำที่เกิดจากการยุบตัวของรูปทรงที่ซับซ้อนมากขึ้นจะปลดปล่อยคลื่นความโน้มถ่วง
จักรวาลวิทยา
ลักษณะสำคัญที่สุดอย่างหนึ่งของสัมพัทธภาพทั่วไปคือสามารถใช้ได้กับเอกภพทั้งหมด จุดสำคัญคือในมาตราส่วนใหญ่ เอกภพนี้ดูเหมือนสร้างอยู่บนเส้นตรงเรียบง่ายมาก ๆ คือ ทุกการสังเกตในปัจจุบันเสนอว่าโดยเฉลี่ยโครงสร้างของจักรวาลควรคงเดิมโดยประมาณ โดยไม่ขึ้นอยู่กับสถานที่ของผู้สังเกตหรือทิศทางของการสังเกต เอกภพเป็นเนื้อเดียวกันและไอโซทรอปี (ภาวะเอกรูป) โดยประมาณ เอกภพที่ง่ายโดยเปรียบเทียบนี้สามารถอธิบายได้ด้วยผลเฉลยง่ายของสมการของไอน์สไตน์ แบบจำลองจักรวาลวิทยาของเอกภพปัจจุบันได้มาจากการรวมผลเฉลยง่าย ๆ เหล่านี้กับสัมพัทธภาพทั่วไปโดยทฤษฎีที่อธิบายคุณสมบัติของปริมาณสสารของเอกภพ ได้แก่ อุณหพลศาสตร์ ฟิสิกส์นิวเคลียร์และฟิสิกส์อนุภาค ตามแบบจำลองเหล่านี้ เอกภพปัจจุบันแห่งนี้ถือกำเนิดจากภาวะอุณหภูมิสูงและหนาแน่นยิ่งยวด ที่เรียก บิกแบง ทีเมื่อประมาณ 14,000 ล้านปีก่อนและมีการขยายตัวนับแต่นั้น
สมการของไอน์สไตน์สามารถวางนัยทั่วไปได้โดยการเพิ่มพจน์ที่เรียก ค่าคงที่จักรวาลวิทยา เมื่อมีพจน์นี้อยู่ ปริภูมิว่างเองจะประพฤติตนเป็นแหล่งความโน้มถ่วงดึงดูด (หรือที่พบน้อยกว่า ผลัก) ไอน์สไตน์นำเสนอพจน์นี้ครั้งแรกในเอกสารบุกเบิกปี 1917 ว่าด้วยจักรวาลวิทยา โดยมีแรงจูงใจจำเพาะมาก คือ ความคิดจักรวาลวิทยาร่วมสมัยถือว่าเอกภาพเป็นสถิต และต้องอาศัยอีกพจน์หนึ่งเพื่อสร้างเอกภพแบบจำลองสถิติภายในกรอบของสัมพัทธภาพทั่วไป เมื่อชัดเจนว่าเอกภพไม่ใช่สถิต แต่กำลังขยายตัว ไอน์สไตน์จึงรีบทิ้งพจน์ใหม่นี้ นับแต่สิ้นสุดคริสต์ทศวรรษ 1990 อย่างไรก็ตาม หลักฐานดาราศาสตร์บ่งชี้ว่าการขยายตัวที่มีความเร่งนี้ต้องกันกับค่าคงที่จักรวาลวิทยา หรือเทียบเท่ากับพลังงานมืดชนิดที่จำเพาะและพบทั่วไป กำลังสะสมอย่างคงที่
การวิจัยสมัยใหม่
สัมพัทธภาพทั่วไปประสบความสำเร็จอย่างมากในการให้กรอบสำหรับแบบจำลองที่แม่นยำซึ่งอธิบายกลุ่มปรากฏการณ์ทางฟิสิกส์หลายอย่างน่าประทับใจ อีกด้านหนึ่ง ยังมีคำถามที่ยังไม่มีคำถามที่น่าสนใจหลายข้อ และโดยเฉพาะอย่างยิ่ง ตัวทฤษฎีโดยรวมเกือบแน่นอนว่าไม่เสร็จสมบูรณ์
สัมพัทธภาพทั่วไปเป็นทฤษฎี หมายความว่า ทฤษฎีนี้ไม่รวมผลของฟิสิกส์ควอนตัม ทำให้แตกต่างจากทฤษฎีอันตรกิริยาพื้นฐานสมัยใหม่อื่นทั้งหมด การแสวงสัมพัทธภาพทั่วไปฉบับควอนตัมเป็นปัญหาที่ยังต้องการคำตอบมูลฐานที่สุดคำถามหนึ่งในวิชาฟิสิกส์ แม้มีผู้ท้าชิงที่มีแววอย่างทฤษฎีความโน้มถ่วงเชิงควอนตัม โดยเฉพาะอย่างยิ่งทฤษฎีสตริงและความโน้มถ่วงเชิงควอนตัมวงวน แต่ในปัจจุบันยังไม่มีทฤษฎีที่ต้องกันและสมบูรณ์ มีผู้หวังมายาวนานว่าทฤษฎีความโน้มถ่วงเชิงควอนตัมจะกำจัดคุณลักษณะที่เป็นปัญหาอีกประการหนึ่งของสัมพัทธภาพทั่วไป ได้แก่ การมีภาวะเอกฐานของปริภูมิ-เวลา ภาวะเอกฐานเหล่านี้เป็นเขตแดน ("ขอบคม") ของปริภูมิ-เวลาซึ่ง ณ ที่นั้นเรขาคณิตจะนิยามไม่ชัดเจน โดยมีผลคือสัมพัทธภาพทั่วไปจะเสียอำนาจในการพยากรณ์ ยิ่งไปกว่านั้น ยังมีสิ่งที่เรียกทฤษฎีบทภาวะเอกฐานซึ่งพยากรณ์ว่าภาวะเอกฐานดังกล่าวจะต้องมีอยู่ในเอกภพหากจะยึดถือกฎสัมพัทธภาพทั่วไปโดยไม่มีการดัดแปรทางควอนตัมใด ๆ ตัวอย่างขึ้นชื่อที่สุด ได้แก่ ภาวะเอกฐานที่สัมพันธ์กับเอกภพจำลองซุ่งอธิบายหลุมดำและจุดเริ่มต้นของเอกภพ
มีความพยายามอื่นในการดัดแปรสัมพัทธภาพทั่วไปในบริบทจักรวาลวิทยา ในแบบจำลองจักรวาลวิทยาสมัยใหม่ พลังงานส่วนใหญ่ในเอกภพอยู่ในรูปที่ไม่เคยมีการตรวจพบโดยตรง เรียก พลังงานมืดและสสารมืด มีข้อเสนอซึ่งเป็นที่ถกเถียงกันหลายข้อเพื่อลบความจำเป็นพลังงานและสสารแบบที่อธิบายเข้าใจได้ยาก โดยการดัดแปรกฎที่ว่าด้วยความโน้มถ่วงและพลศาสตร์การขยายตัวของจักรวาล ตัวอย่างเช่น พลศาสตร์นิวตันแบบปรับปรุงใหม่
นอกจากความท้าทายของผลควอนตัมและจักรวาลวิทยาแล้ว การวิจัยเรื่องสัมพัทธภาพทั่วไปยังเต็มไปด้วยโอกาสสำหรับการสำรวจต่อไป นักสัมพัทธภาพทางคณิตศาสตร์สำรวจสภาพของภาวะเอกฐานและคุณสมบัติมูลฐานของสมการของไอน์สไตน์ และการจำลองคอมพิวเตอร์ที่ครอบคลุมมากขึ้นกว่าแต่ก่อนของปริภูมิ-เวลาจำเพาะ (เช่น ปริภูมิ-เวลาที่อธิบายหลุมดำที่กำลังรวมตัวกัน) ก็มีการดำเนินงานแล้ว ตั้งแต่กว่าเก้าสิบปีหลังมีการเผยแพร่ทฤษฎีนี้ครั้งแรก การวิจัยยิ่งมีความเคลื่อนไหวมากว่าที่เคย
เชิงอรรถ
- การพัฒนานี้มีการติดตาม เช่น ใน Renn 2005, p. 110ff., ในบทที่ 9 ถึง 15 ของ Pais 1982, และใน Janssen 2005 ความสรุปของความโน้มถ่วงแบบนิวตันพบได้ใน Schutz 2003, บทที่ 2–4 การกล่าวว่าปัญหาความโน้มถ่วงแบบนิวตันสะกิดใจไอน์สไตน์ก่อนปี 1907 หรือไม่นั้นเป็นไปไม่ได้ แต่เขายอมรับเองว่าความพยายามอย่างจริงจังครั้งแรกของเขาในการประนีประนอมทฤษฎีนั้นกับสัมพัทธภาพทั่วไปเกิดขึ้นในปีนั้น, cf. Pais 1982, p. 178
- มีอธิบายรายละเอียดในบทที่ 2 ของ Wheeler 1990
- แม้หลักการสมมูลยังเป็นส่วนหนึ่งของอรรถาธิบายสมัยใหม่ของทฤษฎีสัมพัทธภาพทั่วไป ก็ยังมีข้อแตกต่างระหว่างฉบับสมัยใหม่และมโนทัศน์ดั้งเดิมของไอน์สไตน์อยู่บ้าง cf. Norton 1985
- เช่น Janssen 2005, p. 64f ไอน์สไตน์เองอธิบายข้อนี้ในส่วน XX ของหนังสือที่ไม่ใช้ภาษาเทคนิคของเขา Einstein 1961 หลังความคิดก่อนหน้านี้ของแอร์นสท์ มัช ไอน์สไตน์ยังสำรวจแรงหนีศูนย์กลางและแนวเทียบความโน้มถ่วงของแรง cf. Stachel 1989
- ไอน์สไตน์อธิบายข้อนี้ในส่วน XX ของ Einstein 1961 เขาพิจารณาวัตถุ "ที่ถูกแขวน" ด้วยเชือกจากเพดานห้องที่อยู่บนจรวดที่มีความเร่ง โดยจากภายในห้องดูเหมือนความโน้มถ่วงกำลังดึงวัตถุลงด้วยแรงที่ได้สัดส่วนกับมวลของมัน แต่จากภายนอกจรวดดูเหมือนเชือกกำลังถ่ายโอนความเร่งจากจรวดสู่วัตถุ ฉะนั้นจะต้องมีการออก "แรง" เพื่อให้เกิดปรากฏการณ์ดังกล่าว
- ที่จำเพาะกว่าคือ การคำนวณของไอน์สไตน์ซึ่งอธิบายในบทที่ 11b ของ Pais 1982 ใช้หลักการสมมูล ความสมมูลระหว่างแรงโน้มถ่วงและแรงเฉื่อย และผลลัพธ์ของสัมพัทธภาพพิเศษสำหรับการแพร่กระจายของแสงและสำหรับผู้สังเกตที่มีความเร่ง (ผู้สังเกตที่มีความเร่งโดยการพิจารณากรอบอ้างอิงเฉื่อยขณะหนึ่งในแต่ละขณะที่สัมพันธ์กับผู้สังเกตที่มีความเร่ง)
- ผลนี้สามารถแปลงจากสัมพัทธภาพพิเศษได้โดยตรง ไม่ว่าโดยดูจากสถานการณ์สมมูลของผู้สังเกตสองคนในยานจรวดที่มีความเร่งหรือโดยดูจากลิฟต์ที่ตก ในทั้งสองสถานการณ์ การเลื่อนความถี่มีคำบรรยายเทียบทเท่าเป็นการเลื่อนด็อพเพลอร์ระหว่างกรอบอ้างอิงหนึ่ง ๆ สำหรับบทแปลงอย่างง่ายของผลนี้ ดู Harrison 2002
- ดูบทที่ 12 ของ Mermin 2005
- Cf. Ehlers & Rindler 1997 สำหรับการนำเสนอที่ไม่ใช้ภาษาเทคนิค ดู Pössel 2007
- มีอธิบายผลน้ำขึ้นลงเหล่านี้และผลอื่นใน Wheeler 1990, pp. 83–91
- การตีความน้ำขึ้นลงและเรขาคณิตมีอธิบายในบทที่ 5 ของ Wheeler 1990 การพัฒนาในประวัติศาสตร์ส่วนนี้มีติดตามใน Pais 1982, ส่วน 12b
- สำหรับการนำเสนอมโนทัศน์ปริภูมิ-เวลาระดับประถม ดูส่วนแรกของบทที่ 2 ของ Thorne 1994 และ Greene 2004, p. 47–61 การจัดการที่สมบูรณ์กว่าในระดับค่อนข้างประถมพบได้ เช่น ใน Mermin 2005 และใน Wheeler 1990, บทที่ 8 และ 9
- Marolf, Donald (1999). "Spacetime Embedding Diagrams for Black Holes". General Relativity and Gravitation. 31: 919–944. :gr-qc/9806123. Bibcode:1999GReGr..31..919M. doi:10.1023/A:1026646507201.
- ดู Wheeler 1990, บทที่ 8 และ 9 สำหรับนิทัศน์อย่างชัดเจนสำหรับปริภูมิ-เวลาที่มีความโค้ง
- ความลำบากของไอน์สไตน์ในการค้นพบสมการสนามที่ถูกต้องสืบได้ในบทที่ 13–15 ของ Pais 1982
- เช่น p. xi ใน Wheeler 1990
- บันทึกอย่างละเอียดถี่ถ้วนแต่ยังสามารถเข้าใจได้ของเรขาคณิตเชิงอนุพันธ์และการประยุกต์ในสัมพัทธภาพทั่วไปพบได้ใน Geroch 1978
- ดูบทที่ 10 ของ Wheeler 1990
- อันที่จริง เมื่อเริ่มต้นจากทฤษฎีสมบูรณ์ สมการของไอน์สไตน์สามารถใช้แปลงกฎการเคลื่อนที่ที่ซับซ้อนกว่าสำหรับสสารว่าเป็นผลลัพธ์ของเรขาคณิตได้ แต่เมื่อแลปงจากการเคลื่อนที่ของอนุภาคทดสอบในอุดมคตินี้ไม่ใช่งานเล็ก ๆ, cf. Poisson 2004
- คำอธิบายง่าย ๆ ของความสมมูลมวล–พลังงานหาได้ในส่วน 3.8 และ 3.9 ของ Giulini 2005
- ดูบทที่ 6 ของ Wheeler 1990
- สำหรับบทนิยามลงรายละเอียดมากกว่าของเมตริก แต่เป็นแบบไม่เป็นทางการกว่าเมื่อเทียบกับการนำเสนอในตำราเรียน ดูบทที่ 14.4 ของ Penrose 2004
- มีการสำรวจความหมายเรขาคณิตของสมการไอน์สไตน์ในบทที่ 7 และ 8 ของ Wheeler 1990 cf. กล่อง 2.6 ใน Thorne 1994 บทนำที่ใช้เฉพาะคณิตศาสตร์อย่างง่ายมาก ๆ มีให้ในบทที่ 19 ของ Schutz 2003
- ผลเฉลยสำคัญที่สุดมีแสดงรายการในตำราสัมพัทธภาพทั่วไปทุกเล่ม; สำหรับบทสรุป (ภาษาเทคนิค) ของความเข้าใจปัจจุบันของเรา ดู Friedrich 2005
- หากจะกล่าวให้แม่นยำกว่า การวัดเหล่านี้เป็นการวัดตำแหน่งดาวเคราะห์แบบ Very-long-baseline interferometry (VLBI) ดูบทที่ 5 ของ Will 1993 และส่วน 3.5 ของ Will 2006
- สำหรับการวัดในอดีต ดู Hartl 2005, Kennefick 2005, และ Kennefick 2007; การแปลงดั้งเดิมของโซลด์เนอร์ในกรอบทฤษฎีของนิวตันคือ von Soldner 1804 สำหรับการวัดที่เที่ยงตรงที่สุดในปัจจุบัน ดู Bertotti 2005
- ดู Kennefick 2005 และบทที่ 3 ของ Will 1993 สำหรับการวัดซีรีอุสบี ดู Trimble & Barstow 2007
- Pais 1982, Mercury on pp. 253–254, การมีชื่อเสียงขึ้นมาของไอน์สไตน์ในส่วน 16b และ 16c
- Everitt, C.W.F.; Parkinson, B.W. (2009), Gravity Probe B Science Results—NASA Final Report (PDF), สืบค้นเมื่อ 2009-05-02
- Kramer 2004.
- บันทึกที่เข้าใจง่ายของปรากฏการณ์สัมพัทธภาพในระบบกำหนดตำแหน่งบนโลกพบได้ใน Ashby 2002; มีให้รายละเอียดใน Ashby 2003
- บทนำการทดสอบสัมพัทธภาพทั่วไปที่เข้าใจง่ายอยู่ใน Will 1993; บันทึกที่ใช้ศัพท์เทคนิคมากกว่าและทันสมัยกว่าดู Will 2006
- เรขาคณิตของสถานการณ์ดังกล่าวมีการสำรวจในบทที่ 23 ของ Schutz 2003
- บทนำเลนส์ความโน้มถ่วงและการประยุกต์พบได้ในเว็บเพจ Newbury 1997 และ Lochner 2007
- (LIGO Scientific Collaboration and Virgo Collaboration) B. P. Abbott; และคณะ (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. :1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975.
- Schutz 2003, pp. 317–321; Bartusiak 2000, pp. 70–86.
- การค้นหาคลื่นความโน้มถ่วงมีอธิบายใน Bartusiak 2000 และใน Blair & McNamara 1997
- สำหรับภาพรวมประวัติศาสตร์ฟิสิกส์หลุมดำนับแต่เริ่มต้นในต้นคริสต์ศตวรรษที่ 20 ถึงสมัยใหม่ ดูบันทึกที่อ่านได้ง่ายของ Thorne 1994 สำหรับบันทึกทันสมัยว่าด้วยบทบาทของหลุมดำในการก่อกำเนิดโครงสร้าง ดู Springel et al. 2005; ความย่อโดยสรุปพบได้ในบทความที่เกี่ยวข้องกัน Gnedin 2005
- ดูบทที่ 8 ของ Sparke & Gallagher 2007 และ Disney 1998 การจัดการที่ถี่ถ้วนกว่า แต่เกี่ยวข้องกับคณิตศาสตร์น้อยกว่าโดยเปรียบเทียบพบใน Robson 1996
- บทนำระดับประถมสู่ทฤษฎีบทความเป็นได้อย่างเดียวของหลุมดำพบได้ใน Chrusciel 2006 และใน Thorne 1994, pp. 272–286
- สารสนเทศโดยละเอียดพบได้ใน Ned Wright's Cosmology Tutorial and FAQ, Wright 2007; บทนำที่เข้าใจง่ายมากได้แก่ Hogan 1999; Berry 1989 ใช้คณิตศาสตร์ระดับต่ำกว่าปริญญาตรีแต่เลี่ยงเครื่องมือคณิตศาสตร์ขั้นสูงของสัมพัทธภาพทั่วไป และให้การนำเสนอที่ถี่ถ้วนกว่า
- งานวิจัยของไอน์สไตน์ได้แก่ Einstein 1917; คำอธิบายที่ดีของพัฒนาการสมัยใหม่ยิ่งขึ้นพบได้ใน Cowen 2001 และ Caldwell 2004
- Cf. Maddox 1998, pp. 52–59 และ 98–122; Penrose 2004, ส่วน 34.1 และบทที่ 30
- ด้วยการมุ่งสนใจทฤษฎีสตริง การค้นหาความโน้มถ่วงเชิงควอนตัมมีอธิบายใน Greene 1999; สำหรับบันทึกจากมุมมองของความโน้มถ่วงเชิงควอนตัมวงวน ดู Smolin 2001.
- สำหรับสสารมืด ดู Milgrom 2002; สำหรับพลังงานมืด ดู Caldwell 2004
- บทปฏิทัศน์ปัญหาต่าง ๆ และเทคนิคที่กำลังมีการพัฒนาเพื่อเอาชนะปัญหา ดู Lehner 2002
- จุดเริ่มต้นที่ดีสำหรับภาพจับการวิจัยในปัจจุบันเกี่ยวกับเรื่องสัมพัทธภาพคือวารสารปฏิทัศน์อิเล็กทรอนิกส์ Living Reviews in Relativity 2016-12-27 ที่ เวย์แบ็กแมชชีน
อ้างอิง
- Ashby, Neil (2002), "Relativity and the Global Positioning System" (PDF), Physics Today, 55 (5): 41–47, Bibcode:2002PhT....55e..41A, doi:10.1063/1.1485583
- Ashby, Neil (2003), , Living Reviews in Relativity, 6: 1, Bibcode:2003LRR.....6....1A, doi:10.12942/lrr-2003-1, คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-07-04, สืบค้นเมื่อ 2007-07-06
- Bartusiak, Marcia (2000), Einstein's Unfinished Symphony: Listening to the Sounds of Space-Time, Berkley, ISBN
- Berry, Michael V. (1989), Principles of Cosmology and Gravitation (2nd ed.), Institute of Physics Publishing, ISBN
- (2005), "The Cassini Experiment: Investigating the Nature of Gravity", ใน Renn, Jürgen (บ.ก.), One hundred authors for Einstein, Wiley-VCH, pp. 402–405, ISBN
- ; McNamara, Geoff (1997), Ripples on a Cosmic Sea. The Search for Gravitational Waves, Perseus, ISBN
- Caldwell, Robert R. (2004), "Dark Energy", Physics World, 17: 37–42, doi:10.1088/2058-7058/17/5/36
- Chrusciel, Piotr (2006), "How many different kinds of black hole are there?", , คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2011-04-14, สืบค้นเมื่อ 2007-07-15
- Cowen, Ron (2001), "A Dark Force in the Universe", Science News, Society for Science &, 159 (14): 218, doi:10.2307/3981642, JSTOR 3981642
- Disney, Michael (1998), "A New Look at Quasars", Scientific American, 278 (6): 52–57, Bibcode:1998SciAm.278f..52D, doi:10.1038/scientificamerican0698-52
- Ehlers, Jürgen; (1997), "Local and Global Light Bending in Einstein's and other Gravitational Theories", General Relativity and Gravitation, 29 (4): 519–529, Bibcode:1997GReGr..29..519E, doi:10.1023/A:1018843001842
- Einstein, Albert (1917), "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie", Sitzungsberichte der Preußischen Akademie der Wissenschaften: 142
- Einstein, Albert (1961), Relativity. The special and general theory, Crown Publishers
- Friedrich, Helmut (2005), "Is general relativity 'essentially understood'?", Annalen der Physik, 15 (1–2): 84–108, :gr-qc/0508016, Bibcode:2006AnP...518...84F, doi:10.1002/andp.200510173
- Geroch, Robert (1978), General relativity from A to B, University of Chicago Press, ISBN
- Giulini, Domenico (2005), Special relativity. A first encounter, Oxford University Press, ISBN
- Gnedin, Nickolay Y. (2005), "Digitizing the Universe", Nature, 435 (7042): 572–573, Bibcode:2005Natur.435..572G, doi:10.1038/435572a, PMID 15931201
- (1999), The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Vintage, ISBN
- (2004), , A. A. Knopf, Bibcode:2004fcst.book.....G, ISBN
- Harrison, David M. (2002), A Non-mathematical Proof of Gravitational Time Dilation (PDF), สืบค้นเมื่อ 2007-05-06
- Hartl, Gerhard (2005), "The Confirmation of the General Theory of Relativity by the British Eclipse Expedition of 1919", ใน Renn, Jürgen (บ.ก.), One hundred authors for Einstein, Wiley-VCH, pp. 182–187, ISBN
- Hogan, Craig J. (1999), The Little Book of the Big Bang. A Cosmic Primer, Springer, ISBN
- Janssen, Michel (2005), (PDF), Annalen der Physik, 14 (S1): 58–85, Bibcode:2005AnP...517S..58J, doi:10.1002/andp.200410130, คลังข้อมูลเก่าเก็บจากแหล่งเดิม (PDF)เมื่อ 2017-07-13, สืบค้นเมื่อ 2019-04-19
- Kennefick, Daniel (2005), "Astronomers Test General Relativity: Light-bending and the Solar Redshift", ใน Renn, Jürgen (บ.ก.), One hundred authors for Einstein, Wiley-VCH, pp. 178–181, ISBN
- Kennefick, Daniel (2007), "Not Only Because of Theory: Dyson, Eddington and the Competing Myths of the 1919 Eclipse Expedition", Proceedings of the 7th Conference on the History of General Relativity, Tenerife, 2005, vol. 0709, p. 685, :0709.0685, Bibcode:2007arXiv0709.0685K
- Kramer, Michael (2004), "Millisecond Pulsars as Tools of Fundamental Physics", ใน Karshenboim, S. G.; Peik, E. (บ.ก.), Astrophysics, Clocks and Fundamental Constants (Lecture Notes in Physics Vol. 648), Springer, pp. 33–54 (E-Print at astro-ph/0405178 2017-11-05 ที่ เวย์แบ็กแมชชีน)
- Lehner, Luis (2002), "Numerical Relativity: Status and Prospects", Proceedings of the 16th International Conference on General Relativity and Gravitation, held 15–21 July 2001 in Durban, p. 210, :gr-qc/0202055, Bibcode:2002grg..conf..210L, doi:10.1142/9789812776556_0010, ISBN
- Lochner, Jim, บ.ก. (2007), , Imagine the Universe website, NASA GSFC, คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-06-17, สืบค้นเมื่อ 2007-06-12
- (1998), What Remains To Be Discovered, Macmillan, ISBN
- (2005), It's About Time. Understanding Einstein's Relativity, Princeton University Press, ISBN
- Milgrom, Mordehai (2002), "Does dark matter really exist?", Scientific American, 287 (2): 30–37, Bibcode:2002SciAm.287b..42M, doi:10.1038/scientificamerican0802-42
- Norton, John D. (1985), "What was Einstein's principle of equivalence?" (PDF), Studies in History and Philosophy of Science, 16 (3): 203–246, doi:10.1016/0039-3681(85)90002-0, สืบค้นเมื่อ 2007-06-11
- Newbury, Pete (1997), Gravitational lensing webpages, คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2012-12-06, สืบค้นเมื่อ 2007-06-12
- Nieto, Michael Martin (2006), (PDF), EurophysicsNews, 37 (6): 30–34, :gr-qc/0702017, Bibcode:2006ENews..37...30N, doi:10.1051/epn:2006604, คลังข้อมูลเก่าเก็บจากแหล่งเดิม (PDF)เมื่อ 2007-06-29
- (1982), 'Subtle is the Lord ...' The Science and life of Albert Einstein, Oxford University Press, ISBN
- (2004), The Road to Reality, A. A. Knopf, ISBN
- Pössel, M. (2007), "The equivalence principle and the deflection of light", , คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2007-05-03, สืบค้นเมื่อ 2007-05-06
- Poisson, Eric (2004), "The Motion of Point Particles in Curved Spacetime", Living Rev. Relativ., 7, :gr-qc/0306052, Bibcode:2004LRR.....7....6P, doi:10.12942/lrr-2004-6, สืบค้นเมื่อ 2007-06-13
- Renn, Jürgen, บ.ก. (2005), Albert Einstein – Chief Engineer of the Universe: Einstein's Life and Work in Context, Berlin: Wiley-VCH, ISBN
- Robson, Ian (1996), Active galactic nuclei, John Wiley, ISBN
- Schutz, Bernard F. (2003), Gravity from the ground up, Cambridge University Press, ISBN
- (2001), , Basic, ISBN
- von Soldner, Johann Georg (1804), , Berliner Astronomisches Jahrbuch: 161–172.
- Sparke, Linda S.; Gallagher, John S. (2007), Galaxies in the universe – An introduction, Cambridge University Press, ISBN
- Springel, Volker; White, Simon D. M.; Jenkins, Adrian; Frenk, Carlos S.; Yoshida, N; Gao, L; Navarro, J; Thacker, R; Croton, D; และคณะ (2005), "Simulations of the formation, evolution and clustering of galaxies and quasars" (PDF), Nature, 435 (7042): 629–636, :astro-ph/0504097, Bibcode:2005Natur.435..629S, doi:10.1038/nature03597, PMID 15931216
- (1989), "The Rigidly Rotating Disk as the 'Missing Link in the History of General Relativity'", ใน Howard, D.; Stachel, J. (บ.ก.), Einstein and the History of General Relativity (Einstein Studies, Vol. 1), Birkhäuser, pp. 48–62, ISBN
- (1994), Black Holes and Time Warps: Einstein's Outrageous Legacy, W W Norton & Company, ISBN
- ; Barstow, Martin (2007), "Gravitational redshift and White Dwarf stars", , คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2011-08-28, สืบค้นเมื่อ 2007-06-13
- (1990), A Journey Into Gravity and Spacetime, Scientific American Library, San Francisco: W. H. Freeman, ISBN
- (1993), Was Einstein Right?, Oxford University Press, ISBN
- (2006), "The Confrontation between General Relativity and Experiment", Living Rev. Relativ., 9: 3, :gr-qc/0510072, Bibcode:2006LRR.....9....3W, doi:10.12942/lrr-2006-3, สืบค้นเมื่อ 2007-06-12
- Wright, Ned (2007), Cosmology tutorial and FAQ, University of California at Los Angeles, สืบค้นเมื่อ 2007-06-12
แหล่งข้อมูลอื่น
- Einstein Online 2014-06-01 ที่ เวย์แบ็กแมชชีน. Website featuring articles on a variety of aspects of relativistic physics for a general audience, hosted by the
wikipedia, แบบไทย, วิกิพีเดีย, วิกิ หนังสือ, หนังสือ, ห้องสมุด, บทความ, อ่าน, ดาวน์โหลด, ฟรี, ดาวน์โหลดฟรี, mp3, วิดีโอ, mp4, 3gp, jpg, jpeg, gif, png, รูปภาพ, เพลง, เพลง, หนัง, หนังสือ, เกม, เกม, มือถือ, โทรศัพท์, Android, iOS, Apple, โทรศัพท์โมบิล, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, Sonya, MI, PC, พีซี, web, เว็บ, คอมพิวเตอร์
thvsdismphththphaphthwip epnthvsdikhwamonmthwngsungxlebirt ixnsitnphthnarahwangpi 1907 thung 1915 miickhwamwa phlkhxngkhwamonmthwngthisngektidrahwangmwlekidcakkarbidngx warp khxngpriphumi ewlakarthdsxbsmphththphaphthwipkhwamethiyngsungodyyanxwkaskssini ehyekhins cintnakarkhxngsilpin khlunwithyuthisngrahwangolkaelayan khlunsiekhiyw thukchalxodypriphumi ewlathibidngx esnsinaengin enuxngcakmwlkhxngdwngxathitybthkhwamnixangxingkhristskrach khristthswrrs khriststwrrs sungepnsarasakhykhxngenuxha tnkhriststwrrsthi 20 kdkhwamonmthwngsaklkhxngniwtnepnthiyxmrbknmanankwasxngrxypiwaepnkhaxthibayaerngonmthwngrahwangmwlthismehtusmphl inaebbcalxngkhxngniwtn khwamonmthwngepnphlkhxngaerngdungdudrahwangwtthufakfakhnadmhuma aemniwtnprasbpyhacakthrrmchatithiyngimthrabkhxngaerngnn aetthvsdiaerngonmthwngkhxngniwtnklaymaepnkrxbphunthanthiprasbkhwamsaercxyangyinginkarxthibaykarekhluxnthikhxngwtthufakfa karthdlxngaelakarsngektaesdngwakhaxthibaykhwamonmthwngkhxngixnsitnxthibayhlaypraktkarnthikdkhxngniwtnimxthibay echn khaphidpktielknxyinwngokhcrkhxngdawphuthaeladawekhraahxun smphththphaphthwipyngthanayphlihmkhxngkhwamonmthwng echn khlunkhwamonmthwng elnskhwamonmthwng aelaphlkhxngkhwamonmthwngtxewlathieriyk gravitational time dilation karthanayehlanicanwnmakidrbkaryunyncakkarthdlxnghruxkarsngekt lasudidaek khlunkhwamonmthwng swnkarthanayxun epnhwkhxkarwicythikalngdaeninxyu mikarphthnasmphththphaphthwipepnekhruxngmuxsakhyinfisiksdarasastrsmyihm odyepnrakthankhxngkhwamekhaicpccubnkhxnghlumda sungepnbriewnkhxngpriphumisungphlkhwamonmthwngekhmesiycnaemaetaesngkxxkmaimid khwamonmthwngthiekhmkhxnghlumdakhadwathaihekidkarplxyrngsixyangekhmodywtthuthangdarasastrbangchnid echn niwekhliysdarackrkmmnthrux smphththphaphthwipyngepnswnhnungkhxngkrxbaebbcalxngckrwalwithyabikaebngmatrthan aemsmphththphaphthwipmiichthvsdikhwamonmthwngsmphththniymthvsdiediyw aetepnthvsdithieriybngaythisudsungekhaknkbkhxmulkarthdlxng krann yngmikhathamthiimmikhatxbxyucanwnhnung khathamhlkmulthisudkhux smphththphaphthwipcasamarthekhaidkbkdklsastrkhwxntmidxyangirephuxphlitthvsdikhwamonmthwngechingkhwxntmthismburnaelatxngknintnexngcakthvsdismphththphaphphiesssusmphththphaphthwipineduxnknyayn 1905 xlebirt ixnsitncdphimphthvsdismphththphaphphiesskhxngtn sungthaihkdkarekhluxnthikhxngniwtnekhaidkb xntrkiriyarahwangwtthukbpracuiffa smphththphaphphiessnakrxbihmmaihwichafisiksthnghmdodyesnxmonthsnihmpriphumiaelaewla thvsdifisikssungepnthiyxmrbkninewlannbangthvsdiimtxngknkbkrxbnn twxyangsakhykhux thvsdikhwamonmthwngkhxngniwtnsungxthibaykhwamdungdudrahwangknrahwangwtthuxnenuxngcakmwlkhxngmn nkfisikshlaykhnrwmthngixnsitnkhnhathvsdisungcathaihkdkhwamonmthwngkhxngniwtnekhaidkbthvsdismphththphaphphiess miephiyngthvsdikhxngixnsitnethannthiidrbkarphisucnaelwwasxdkhlxngkbkarthdlxngaelakarsngekt ephuxekhaickhwamkhidphunthankhxngthvsdi inkarnikartidtamkhwamkhidkhxngixnsitnrahwangpi 1907 thung 1915 caihraylaexiyd tngaetkarthdlxngthangkhwamkhidebuxngtnkhxngekhaxnekiywkhxngkbphusngektinkartkxisrasuthvsdikhwamonmthwngerkhakhnitsmburnkhxngekha hlkkarsmmul bukhkhlinliftthitkxyangxisraprasbphawairnahnk wtthucalxyxyuodyirkarekhluxnihwhruxekhluxnihwdwykhwamerwkhngthi enuxngcakthuksinginlifttklngipdwykn cungimsamarthsngektphlkhxngkhwamonmthwngid dwywithiniprasbkarnkhxngphusngektinkartkxyangxisracungaeykimidkbphusngektinxwkassungxyuhangcakaehlngkhwamonmthwngsakhyid phusngektehlannepnphusngektechuxythiixnsitnxthibayiwinthvsdismphththphaphphiesskhxngekha khux phusngektsungaesngedinthangepnesntrngdwykhwamerwkhngthi ixnsitntngsmmtithanwaprasbkarnkhlayknkhxngphusngektirnahnkaelaphusngektechuxyinthvsdismphththphaphphiessepntwaethnkhxngkhunsmbtimulthankhxngkhwamonmthwng aelaekhaykihkhxniepnhlkhmudkhxngthvsdismphththphaphthwipkhxngekha odysrupiwinhlkkarsmmulkhxngekha klawodykhraw khux hlkkarnirabuwabukhkhlinliftthitkxyangxisraimsamarthbxkidwatnkalngtkxyangxisra thukkarthdlxngthimisingaewdlxmtkxyangxisradngniihphllphthechnediywkbphusngektkhnaphkhruxkalngekhluxnthiepnraebiybinxwkasthixyuhangcakaehlngkhwamonmthwngid khwamonmthwngaelakhwamerng lukbxlthikalngtkphunincrwdthimikhwamerng say aelabnolk khwa miphlehmuxnkn phlkhxngkhwamonmthwngswnihyhayipemuxxyuinkartkxyangxisra aetphlthiduehmuxnphlkhxngkhwamonmthwngnnsamarththaihekididinkrxbxangxingerng accelerated frame of reference phusngektinhxngpidimsamarthaeykaeyaidwasxngkrnidanlangkrniidepncring wtthukalngtksuphun ephraahxngnnkalngxyubnphiwolkaelawtthunnkalngthukkhwamonmthwngdunglngma wtthukalngtksuphun ephraahxngnnxyubncrwdinxwkas sungmikhwamerng 9 81 m s2 aelaxyuhangcakaehlngkaenidkhwamonmthwngid wtthunnkalngthukdunglngphundwy aerngechuxy ediywknkbthiphlkphukhbrththimikhwamerngipchnkbebaathinngdanhlngbukhkhlnn inthangklbkn phlid thisngektidinkrxbxangxingerngkhwrsngektidinsnamkhwamonmthwngthimikhwamekhmphx knidechnkn hlkkarnithaihixnsitnsamarthphyakrnphlkhxngkhwamonmthwngihm hlayprakaridinpi 1907 dngthicaxthibayinswnthdip phusngektinkrxbxangxingerngcatxngichsingthinkfisikseriykwa aerngethiym ephuxichxthibaykhwamerngthiekhaaelawtthurxbtwekhaprasb twxyanghnungechn aerngthiphlkphukhbrththimikhwamerngipyngebaanngdanhlngbukhkhlnndngthiidklawipaelw xiktwxyanghnungkhuxaerngthibukhkhlrusukwakalngdungaekhnkhunaelaxxkcaktwemuxkalngphyayamhmunehmuxnlukkhang wicarnyankhxngixnsitnmiwa odyhlkphunthanaelwaerngdungsungkhngthiaelaekhychinkhxngsnamkhwamonmthwngkhxngolkkepnechkechnaerngethiymehlani khnadpraktkhxngaerngethiymduehmuxnepnsdswnkbmwlkhxngwtthuid thiaerngnnkrathaesmx twxyangechn ebaanngkhxngphukhbsngaerngephiyngphxiherngphukhbinxtraediywkbrthyntnn ixnsitncungesnxwawtthuinsnamkhwamonmthwngkhwridrbaerngkhwamonmthwngepnsdswnkbmwlkhxngmn dngthiklawiwinkdkhwamonmthwngkhxngniwtn phllphthinwichafisiks kareluxnipthangaedngcakkhwamonmthwngkhxngkhlunaesngemuxaesngekhluxnthikhuntxsnamkhwamonmthwng thiekidcakdawvksehluxngkhanglang inpi 1907 kxnixnsitnkhidkhnthvsdismphththphaphthwipesrcsinaepdpi krann ekhasamarthphyakrnaebbihmthithdsxbidsungxasycudtngtnsahrbphthnathvsdiihmkhxngekha khux hlkkarsmmul phlihmxyangaerk khux kareluxnkhwamthiechingonmthwngkhxngaesng phicarnaphusngektsxngkhnbnyancrwdthimikhwamerng bnyandngklawmimonthsnthrrmchati khun aela lng xyu odythisthangthiyanerngipnneriyk khun aelawtthuthiimthukphukyudcaerngipinthisthangtrngkham hruxtk ipdanlang snnisthanwaphusngektkhnhnungxyu sungkwa xikkhnhnung emuxphusngektkhnthixyutakwasngsyyanaesngaekphusngektthixyusungkwa khwamerngcathaihaesngeluxnipthangaedngsungtrngkbthixackhanwnidcaksmphththphaphphiess phusngektkhnthisxngcawdidaesngkhwamthitakwaphusngektkhnaerk inthangklbkn aesngthisngcakphusngektthixyusungkwacaeluxnipthangnaengin khux eluxnipyngkhwamthisungkhun ixnsitnaeyngwakareluxnkhxngkhwamthidngklawcatxngsngektidinsnamkhwamonmthwngechnkn praktkarndngklawphrrnnainphaphdansaymux sungaesdngkhlunaesngthikhxy eluxnipthangaedngdngechnthiaesngpraphvtirahwangekhluxnthikhunbntxkhwamerngkhxngkhwamonmthwng phlnimikaryunyninkarthdlxngaelwdngxthibaydanlang kareluxnkhwamthicakkhwamonmthwngnismnykbkarkhyaykhnadkhxngewlacakkhwamonmthwng enuxngcakphusngekt thixyusungkwa wdkhlunaesngediywknmikhwamthitakwaphusngektthixyu takwa ewlacatxngphaniperwkwasahrbphusngektthixyusungkwadwy chann ewlacungphanipchakwasahrbphusngektthixyutakwainsnamkhwamonmthwng sakhythitxngennyawasahrbphusngektaetlakhn immikarepliynaeplngkarihlkhxngewlathisngektidsahrbehtukarnhruxkrabwnkarsungepnkhnaphkinkrxbxangxingkhxngphusngektnn ikhhanathithicbewladwynalikakhxngphusngektaetlakhncamienuxxyangediywkn emuxewlaphaniphnungpitamewlathngsxngeruxn phusngektthngsxngcamixayumakkhuntamewlanndwy klawsn khux nalikaaetlaeruxnsxdkhlxngxyangirthitikbkrabwnkarthnghmdthiekidkhuninbriewniklekhiyngkhxngnalikann casamarthsngektwaewlasahrbphusngektthixyutakwaedinchakwaphusngektthixyusungkwaechphaaemuxmikarepriybethiybnalikarahwangphusngekthlaykhnethann phlnielknxymak aetkmikaryunynaelwinkarthdlxnghlaykhrng dngxthibaydanlang inthanxngediywkn ixnsitnphyakrnkarebnaesngcakkhwamonmthwng klawkhux insnamkhwamonmthwng aesngthukebnipinthisthanglng inthangpriman phlechlykhxngixnsitnkhladekhluxnipsxngetha karaeplngthithuktxngtxngxasysutrthimikhwamsmburnmakkhuncakthvsdismphththphaphthwip imephiyngxasyechphaahlkkarsmmul phlnakhunlng ethhsxngethhsungtklngsusunyklangkhxngolkmikhwamerngekhahaknrahwangthitk khwamsmmulrahwangphlkhwamonmthwngaelakhwamechuxyimepnswnhnungkhxngthvsdikhwamonmthwngthismburn emuxtxngichxthibaykhwamonmthwngikltaaehnngkhxngbukhkhlbnphiwolk sngektwakrxbxangxingkhxngbukhkhlnnimichkartkxyangxisra channcungkhadwacamiaerngesiydthan caihkhaxthibaythiehmaasm aetkrxbxangxingkartkxisrabnfnghnungkhxngolkimsamarthxthibayidwaehtuidbukhkhlthixyufngtrngkhamkhxngolkthukaerngonmthwngdunginthisthangtrngknkham hakcaxthibayihngaykhun aerngediywknniyngpraktinethhfasxngethhsungtklngsulngekhiyngkn inkrxbxangxingsungepnkartkxisrakhangethhthngsxngni caduehmuxnwathngsxngcalxyxyuodyirnahnk aetaethcringaelwimich ethhthngsxngniimidtklnginthisthangediywknphxdi aettklngsucudcudhnunginpriphumi klawkhux sunyklangkhwamonmthwngkhxngolk phlthaihkarekhluxnthikhxngethhaetlaethhbangswnekhluxnthiekhahakn insingaewdlxmkhnadelk echn liftthitkxyangxisra khwamerngodysmphththnimikhaelknxymak aetnkdingphsuthathixyufngtrngkhamkhxngolk phlnicamikhamak phltangkhxngaerngdngniyngmiswnihekidnakhunlnginmhasmuthr praktkarnnicungidchuxwa phlnakhunlng khwamsmmulrahwangkhwamechuxyaelakhwaamonmthwngimsamarthxthibayphlnakhunlngid imsamarthkhwamphnaeprinsnamkhwamonmthwngni hakcaxthibaykhwamphnaeprinsnamonmthwng caepntxngmithvsdisungxthibaywithithissar echn mwlihyxyangolk miphltxsingaewdlxmechuxyodyrxbmwlnn cakkhwamerngthungerkhakhnit inkarsarwckhwamsmmulkhxngkhwamonmthwngaelakhwamerngtlxdcnbthbathkhxngaerngnakhunlng ixnsitnkhnphbaenwethiybhlayxyangkberkhakhnit twxyangidaekkarepliynphancakkrxbxangxingechuxy sungxnuphakhxisrawingdwyaerngechuxytamwithiesntrng n khwamerwkhngthi ipepnkrxbxangxinghmun sungcaepntxngkhidphcnephimetimthismnykbaerngesiydthanephuxxthibaykarekhluxnthikhxngxnuphakh niepnaenwethiybkarepliynphancakrabbphikdkharthiesiyn sungesnphikdepnesntrng epnrabbphikdechingesnokhng sungesnphikdimcaepntxngepnesntrng aenwethiybthilukkwaekiywkhxngkbaerngnakhunlngthimikhunsmbtikhxngphunphiweriykkhwamokhng sahrbsnamkhwamonmthwng karmihruximmiaerngnakhunlngtdsinwaxiththiphlkhxngkhwamonmthwngsamarthkacdiddwykareluxkkrxbxangxingkartkxyangxisrahruxim inthanxngediywkn karmihruximmikhwamokhngtdsinwaphunphiwnnethiybethakbranabhnunghruxim invdurxnpi 1912 ixnsitnidrbbndaliccakaenwethiybehlani aelakhnhakarbyytikhwamonmthwngaebberkhakhnit wtthumulthaninwichaerkhakhnitsungidaek cud esntrng aelasamehliym edimniyaminpriphumisammitihruxinphiwsxngmiti inpi 1907 aehrmn mingkhxfski xditsatracarykhnitsastrkhxngixnsitnthiphxliethkhnikhklangswis rierimkarkhidkhnthangerkhakhnitsungthvsdismphththphaphphiesskhxngixnsitnodythierkhakhnitnnimkhidechphaapriphumiethannaetkhidewladwy exnthitiphunthankhxngerkhakhnitihmni khux priphumi ewlasimiti wngokhcrkhxngethhthiekhluxnthiepnesnokhnginpriphumi ewla wngokhcrkhxngethhthiekhluxnthidwykhwamerwkhngthiodyimepliynthisthangsmnykbesntrng sahrbphunphiw karwangnythwipcakerkhakhnitkhxngranabhruxphunphiweriybipepnphunphiwokhngodythwipmikarxthibayintnkhriststwrrsthi 19 odykharl fridrich ekas khabrryaynimikarwangnythwipipyngpriphumithimimtisungkwainrupnyniymthangkhnitsastrthiaebrnharth rimnephyaephrinkhristthswrrs 1850 dwykhwamchwyehluxkhxngerkhakhnitaebbrimn ixnsitnbyytikhabrryaykhwamonmthwngthangerkhakhnitodythipriphumi ewlakhxngmingkhxfskithukaethnthidwypriphumi ewlaokhngbidebiyw echnediywkbthiphunphiwokhngepnnythwipkhxngphunphiwranabthrrmda mikarichranabfngtw Embedding Diagram ephuxphrrnnapriphumi ewlaokhnginbribthkarsuksa hlngixnsitnthrabkhwamsmehtusmphlkhxngaenwethiyberkhakhnitdngniaelw ixnsitnyngtxngichewlaxiksampicungkhnphbhinhlkmumthihayipsahrbthvsdikhxngekha nnkhux smkarxthibaywassarmixiththiphltxkhwamokhngkhxngpriphumi ewlaxyangir hlngbyytismkarthipccubneriyk smkarkhxngixnsitn hruxcaklawihaemnyayingkhunwasmkarsnamkhxngixnsitn aelw ekhanaesnxthvsdikhwamonmthwngihmniinsmyprachumhlaysmykhxngwithyalywithyasastrprsesiyinplaypi 1915 cnnaipsukarnaesnxsudthaykhxngekhainwnthi 25 phvscikayn 1915erkhakhnitkbkhwamonmthwngthvsdismphththphaphechingerkhakhnitkhxngixnsitnsrupidodythxdkhwamcakcxhn wilelxr John Wheeler dngni priphumi ewlabxkwithiekhluxnthiaekssar ssarbxkwithiokhngaekpriphumi ewla khwamhmaykhxngpraoykhnimikarklawthunginsamswnnbcakni sungsarwckarekhluxnthikhxngsingthieriykxnuphakhthdsxb trwcsxbwakhunsmbtiidkhxngssarepnbxekidkhxngkhwamonmthwng aelasudthaynaesnxsmkarkhxngixnsitn sungoyngkhunsmbtikhxngssarehlaniekhakbkhwamokhngkhxngpriphumi ewla karphinicsnamkhwamonmthwng cixxedsiksebnhakn esnlxngticudsxngesn siekhiyw sungerimtnepnesnkhnanthiesnsunysutr siaedng aetebnmabrrcbthikhw inkarthaaephnthixiththiphlkhwamonmthwngkhxngethh body camipraoychnhakkhidthungsingthinkfisikseriykophrb probe hrux khux xnuphakhthiidrbxiththiphlcakkhwamonmthwng aetyngelkaelaebacnimtxngsnicphlkhwamonmthwngkhxngmnexng emuxprascakkhwamonmthwngaelaaerngphaynxkxun xnuphakhthdsxbekhluxnepnesntrngdwykhwamerwkhngthi inphasapriphumi ewla karekhluxnthiniethiybethakarklawwaxnuphakhthdsxbekhluxnthitamewildiln world line trnginpriphumi ewla emuxmikhwamonmthwng priphumi ewlaepnhruxmi aelainpriphumi ewlaokhngxacimmiewildilntrngxyu aetxnuphakhthdsxbekhluxnthitamaenweriyk cixxedsik geodesic thi trngethathiepnipid nnkhux aenwnitamwithisnsudrahwangcuderimtnaelasinsud emuxphicarnakhwamokhngdwy xupmangay dngni inwichaphumimatrsastr withyasastrkarwdkhnadaelarupthrngkhxngolk cixxedsik geodesic macakphasakrik geo aeplwa olk aela daiein aeplwa aebng khux esnthangsnsudrahwangsxngcudbnphiwolk esnthangniodypramankkhuxeskemnthnungkhxngwngklmihy echn esnlxngcicudhruxesnsunysutr aennxnwawithiehlanimiichesntrng ephraaesntxngiptamkhwamokhngkhxngphiwolk aetesnehlanitrngethathiepnipidinenguxnikhbngkhbni khunsmbtiphumimatrsastrtangcakkhunsmbtikhxngesntrng twxyangechn inranabhnung esnkhnancaimmithangmabrrcbkn aetimcringsahrbcixxedsikbnphiwolk twxyangechn esnlxngcicudkhnanthiesnsunysutr aetmiswnrwmthikhw thanxngediywkn ewildilnkhxngxnuphakhthdsxbinkartkxyangxisraepncixxedsikkhxngpriphumi ewlahruxepnesntrngthisudthiepnipidinpriphumi ewla aetyngmikhxaetktangsakhyrahwangthngsxngaelaesntrngcring ethannthisamarthwadidinpriphumi ewlairkhwamonmthwngkhxngsmphththphaphphiess insmphththphaphphiess cixxedsikkhnanyngkhnanknxyu insnamkhwamonmthwngthimiphlnakhunlng odythwipkhxnicaimepncring twxyangechn hakwtthusxngwtthuthithiaerkxyuinphawaphkodysmphththtxkn aetaelwthukplxyinsnamkhwamonmthwngkhxngolk wtthuthngsxngcaekhluxnekhahaknkhnathitksusunyklangkhxngolk wtthuinchiwitpracawn khn rthynt banhruxaemaetphuekha mimwlnxynidemuxethiybkbdawekhraahhruxethhdarasastrxun emuxklawthungwtthuinchiwitpracawn kdwadwyphvtikrrmkhxngxnuphakhthdsxbephiyngphxxthibaysingthiekid thisakhykhux inkarebnxnuphakhthdsxbcakwithicixxedsikkhxngmncatxngmiaerngphaynxkmakratha ekaxithimiphunngxyumiaerngphungkhunphaynxkmakrathapxngknmiihbukhkhlnntkxisrasusunyklangkhxngolkchanncungepniptamcixxedsik sunghakimmissarknrahwangekhakbsunyklangkhxngolkekhakcatklngebuxnglang dwywithini smphththphaphthwipxthibayprasbkarnaerngonmthwngpracawnbnphiwolkwamiichepnaerngdunglngkhxngaerngonmthwng aetepnkarphlkkhunkhxngaerngphaynxk aerngehlaniebnethhthnghmdthixyubnphiwolkcakcixxedsikthikhwrepntampkti sahrbwtthussarsungtxngkhidxiththiphlkhwamonmthwngkhxngmndwy kdkarekhluxnthicasbsxnkwakhxngxnuphakhthdsxbxyubang aetkhxthiwapriphumi ewlabxkwithiekhluxnthiaekssaryngepncringxyu aehlngkhxngkhwamonmthwng inkhaxthibaykhwamonmthwngkhxngniwtn aerngonmthwngekidcakssar hruxcaklawihaemntrngkwann ekidcakkhunsmbtiechphaahnungkhxngwtthukayphaph khux mwl inthvsdikhxngixnsitnaelathvsdikhwamonmthwngthismphnthkn khwamokhngthukcudinpriphumi ewlakekidcakwamissarxairxyu sunginthinimwlepnkhunsmbtisakhyechnediywkninkarkahndxiththiphlkhwamonmthwngkhxngssar aetinthvsdikhwamonmthwngsmphththniym mwlimsamarthepnaehlngkhxngkhwamonmthwngephiyngaehlngediyw smphththphaphoyngmwlkbphlngngan aelaphlngngankbomemntm khwamsmmulrahwangmwlkbphlngngan dngthiaesdngodysutr E mc2 epnphllphththiodngdngthisudkhxngsmphththphaphphiess insmphththphaph mwlaelaphlngnganepnwithikarxthibayprimanthangkayphaphhnung thitangknsxngwithi hakrabbkayphaphhnungmiphlngngan rabbnncamimwlsmny aelarabbkayphaphthimimwlkcamiphlngngansmnydwy odyechphaaxyangying khunsmbtithnghmdkhxngethhthismphnthkbphlngngan echn xunhphumihruxphlngnganyudehniywkhxngrabb echn niwekhliyshruxomelkul prakxbepnmwlkhxngethhnn channcungpraphvtitnepnaehlngkhxngkhwamonmthwng insmphththphaphphiess phlngnganmikhwamechuxmoyngiklchidkbomemntm dngechnthipriphumiaelaewlainthvsdinntangepnswnhnungkhxngexnthitikhrxbkhlumkwathieriyk priphumi ewla phlngnganaelaomemntmepnephiyngswnhnunginprimansimitirwmthinkfisikseriyk four momentum phlkhux hakphlngnganepnaehlngkhxngkhwamonmthwng omemntmkepnaehlngdwy khxniepncringsahrbprimanthiekiywkhxngodytrngkbphlngnganaelaomemntm klawkhux khwamdnphayinaela emuxkhidrwmkn insmphththphaphthwip mwl phlngngan omemntm khwamdnaelakhwamtungepnaehlngkhxngkhwamonmthwng epnwithithissarbxkpriphumi ewlawacaokhngxyangir inkarbyytithangkhnitsastrkhxngthvsdi primanehlanithnghmdepnswnhnungkhxngprimanthangkayphaphkhrxbkhlumkwathieriyk energy momentum tensor smkarkhxngixnsitn smkarkhxngixnsitnepnhwickhxngsmphththphaphthwip smkarehlaniihpramwlkhwamsmphnthrahawangerkhakhnitpriphumi ewlaaelakhunsmbtikhxngssarthiaemnyaodyichphasakhnitsastr thiepnrupthrrmkwann mikarpramwlsutrehlaniodyichmonthsnerkhakhnitrimnn sungkhunsmsbtierkhakhnitkhxngpriphumi hruxpriphumi ewla xthibayodykhunsmbtithieriykwa emtrik metric emtrikekharhssarsnethsthicaepntxngkhanwnkhwamkhidrayathangaelaxngsaerkhakhnimulthaninpriphumi hruxpriphumi ewla okhng rayathangthisxdkhlxngkbphltangkhxnglxngticud 30 xngsa n laticudtangkn phiwthrngklmkhlayphiwolkihtwxyangxyangngay taaehnng n cudid bnphiwsamarthxthibayiddwysxngphikd khux laticudaelalxngticudphumisastr tangcakphikdkharthiechiynkhxngranab phltangkhxngphikdimethakbrayathangbnphiw dngthiaesdnginaephnphaphdankhwamux sahrbphuthixyu n esnsunysutr karekhluxnipthangtawntk 30 xngsalxngticud esnsimwngaedng smnykbrayathangpraman 3 300 kiolemtr xikdanhnung phuthixyulaticud 55 xngsa karekhluxnipthangtawntk 30 xngsalxngticud esnsinaengin kinrayathangephiyng 1 900 kiolemtr channphikdcungimihsarsnethsephiyngphxxthibayerkhakhnitkhxngphiwthrngklm hruxerkhakhnitkhxngpriphumihruxpriphumi ewlaid thisbsxnkwann sarsnethsnnkhuxsingthiekharhsinemtrikxyangaennxn sungepnfngkchnthiniyam n aetlacudkhxngphiw hruxpriphumi hruxpriphumi ewla aelasmphnthphltangkhxngphikdkbphltangkhxngrayathang primanxunidsungihkhwamsnicinerkhakhnit echn khwamyawkhxngkhwamokhngid hruxxngsathiesnokhngsxngesntdkn samarthkhanwnidcakfngkchnemtrikni fngkchnemtrikaelaxtrakarepliyncakcudhnungipxikcudhnungsamarthichniyamprimanthangerkhakhnitid eriyk sungxthibaywapriphumihruxpriphumi ewlaokhngxyangiraemntrngthiaetlacud insmphththphaphthwip emtrikaelaethnesxrkhwamokhngrimnnepnprimanthiniyamthiaetlacudinpriphumi ewla dngthiidklawipaelw primanssarkhxngpriphumi ewlaniyamxikprimanhnung ethnesxrphlngngan omemntm T aelahlkkarthiwa priphumi ewlabxkwithiekhluxnthiaekssar aelassarbxkwithiokhngaekpriphumi ewla hmaykhwamwa primanehlanitxngsmphnthkn ixnsitnsrangsutrkhwamsmphnthniodyichethnesxrkhwamokhngrimnnaelaemtrikephuxniyamprimanthangerkhakhnitxikprimanhnung G sungbdnieriyk sungxthibaywithiokhngkhxngpriphumi ewlabanglksna smkarkhxngixnsitnrabuwa G 8pGc4T displaystyle mathbf G frac 8 pi G c 4 mathbf T klawkhux inphhukhunkhakhngtwhnung priman G sungwdkhwamokhng ekhasmkarkbpriman T sungwdprimanssar inthini G khux khakhngtwkhwamonmthwngkhxngkhwamonmthwngniwtn aela c epnkhwamerwaesngcaksmphththphaphphiess smkarnimkeriykepnphhuphcnwa smkarkhxngixnsitn enuxngcakpriman G aela T tangkahndcakhlayfngkchnkhxngphikdpriphumi ewla aelasmkartang ekhasmkarkbfngkchnswnprakxbehlani phlechlykhxngsmkarehlanixthibayerkhakhnitechphaakhxngpriphumi ewla twxyangechn phlechlychwarschild Schwarzschild solution xthibayerkhakhnitrxb mwlthrngklmimhmun echn dawvkshruxhlumda khnathiphlechlyekhxrxthibayhmundathihmun krann phlechlyxunsamarthxthibaykhlunkhwamonmthwnghruxexkphphthikalngkhyayinkrnikhxngphlechlyfridmnn elaemthr orebirtsn wxlkekxr phlechlyngaythisud khux priphumi ewlamingkhxfskiimokhng khux priphumi ewlathixthibaydwysmphththphaphphiesskarthdlxngimmithvsdiwithyasastridepncringodyotaeyngimid thvsdiaetlaxyangepnaebbcalxngsungcaepntxngtrwcsxbdwykarthdlxng kdkhwamonmthwngkhxngniwtnepnthiyxmrbephraakhidkhanwnkarekhluxnthikhxngdawekhraahaeladwngcnthrinrabbsuriyaodymikhwamaemnyaphxsmkhwr emuxkhwamaemnyakhxngkarwdechingthdlxngkhxy phthnadikhun cungerimmikarsngektkhxaetktanginkarphyakrnkhxngniwtnbang aelakhxaetktangehlanisamarthxthibayiddwythvsdismphththphaphthwip inthanxngediywkn karphyakrnkhxngthvsdismphththphaphthwipcatxngmikartrwcsxbdwykarthdlxngdwy aelaixnsitnexngpradisthkarthdlxngsamxyangsungpccubneriykkarthdsxbthvsdikhlassik dngni wngokhcraebbniwtn siaedng aelaaebbixnsitn sinaengin khxngdawekhraahdwnghnungthiokhcrrxbdawvksthrngklm khlikphaphephuxduaexniemchn khwamonmthwngkhxngniwtnphyakrnwawngokhcrsungdawekhraahediyw thiwnrxbdawvksthrngklmphxdikhwrepnwngri thvsdikhxngixnsitnphyakrnesnokhngthisbsxnkwann khux dawekhraahpraphvtiesmuxnwakalngedinthangxyurxbwngriwnghnung aetinkhnaediywknwngrithngwngkalnghmuncha rxbdawvksdwy inaephnphaphthangkhwamux wngrithiphyakrnodykhwamonmthwngaebbniwtnaesdngdwysiaedng aelawngokhcrbangswnthiixnsitnphyakrnaesdngdwysinaengin sahrbdawekhraahthiokhcrrxbdwngxathity karebiyngebncakwngokhcrkhxngniwtneriyk kareluxncudikldwngxathitymakthisudphidthrrmda anomalous perihelion shift karwdphlnikhrngaerk sahrbdawphuth yxnipthungpi 1859 phllphththiaemnyathisudsahrbdawphuthaeladawekhraahxuncnthungpccubnxasykarwdsungmikardaeninkarrahwangpi 1966 thung 1990 odyichklxngothrthrrsnwithyu thvsdismphththphaphthwipthanaykareluxncudikldwngxathitymakthisudphidthrrmdasahrbdawekhraahthukdwngsungsamarthwdkhadngklawidxyangaemnya idaek dawphuth dawsukraelaolk smphnthphaphthwiprabuwa aesngimedinthangepnesntrngemuxaephinsnamkhwamonmthwng aetaesngklbmikarebnemuxmiethhkhnadmhuma odyechphaaxyangying aesngdawmikarebnemuxechiyddwngxathity thaihtaaehnngkhxngdawvksduehmuxneluxnkhun 1 75 filipdahruxxarkwinathi 1 filipdaethakb 1 3600 khxngxngsa inkrxbkhxngkhwamonmthwngaebbniwtn samarthihehtuphlaebbwithyakarsuksasanuksungnaipsukarebnaesngodykunghnungkhxngprimantamsmphththphaphthwip karphyakrnthitangknsamarththdsxbidodysngektdawvksthixyuikldwngxathityrahwangsuriyuprakha dwywithini khnasarwcaexfrikatawntkkhxngbrietninpi 1919 thimixaethxr exddingtnepnphuna yunynwakarphyakrnkhxngixnsitnthuktxng aelakarphyakrnkhxngniwtnphid odykarsngektsuriyuprakhaeduxnphvsphakhm 1919 phllphthkhxngexddingtnnnimidaemnyamaknk karsngektkarebnaesngkhxngekhwsarthihangiklcakdwngxathityinewlatxma sungichethkhnikhdarasastrwithyuthimikhwamaemnyasung yunynwaphllphthkhxngexddingtnmikhwamaemnyadikwaxyangsakhy karwddngklawkhrngaerkmitngaetpi 1967 swnkarwiekhraahxyangkhrxbkhlumlasudmacakpi 2004 pxndaelaerbkaepnphusngektkareluxnipthangaedngkhxngkhwamonmthwnginhxngptibtikarkhrngaerkinpi 1959 nxkcakniyngphbinkarwdthangfisiksdarasastr sungmikhrngedn cakaesngthihlbxxkcakdawaekhrakhawsirixusbi phlkarkhyaykhnadkhxngewlacakkhwamonmthwngthismphnthknnnwdidcaknalikaxatxmthikalngekhluxnyayipthikhwamsungrahwanghlaysibthunghlayhmunkiolemtr odyehefelaelakhitlinginpi 1971 karwdthiaemnyathisudinpccubnwdodykrawitiophrb ex thiplxyinpi 1976 inbrrdakarthdsxbehlani miephiyngkarekhluxnthiikldwngxathitymakthisudkhxngdawphuthethannthithrabknkxnkarephyaephrkhrngsudthaysungsmphththphaphthwipkhxngixnsitninpi 1916 karyunynkarphyakrnkhxngekhadwykarthdlxngphayhlng odyechphaaxyangyingkarwnkarebnkhxngaesngcakdwngxathitykhrngaerkinpi 1919 thaihixnsitnidrbchuxesiynginradbnanachati karthdlxngthngsamnithaihkaryxmrbsmphththphaphthwipehnuxkwathvsdikhxngniwtnchxbdwyehtuphl aelathangeluxkkhxngsmphththphaphthwipxikhlaythvsdithimikaresnxipphrxmkn say rngsikhxngaesngthiimthukrbkwninpriphumi ewlarab khwa phlchalxchapioraelarngsiaesngthiebninlaaewkkhxngmwlthimikhwamonmthwng karthdsxbsmphththphaphthwipephimetimyngidaek karwdxyangaemnyasungphlchapiorhruxkarhnwngewlacakkhwamonmthwngsahrbaesng sungmikarwdlasudinpi 2002 odyyanxwkaskssini ehyekhins chudkarthdsxbhnungmungennphlthithanaycaksmphththphaphthwipsahrbphvtikrrmkhxngicorsokhpthiekhluxnthiphanxwkas phlehlaniphlhnung cixxedsikphriesschn geodetic precession mikarthdsxbdwykarthdlxngphisyelesxrdwngcnthr hruxkarwdwngokhcrkhxngdwngcnthrthimikhwamaemnyasung karthdsxbxikxyanghnungsungekiywkhxngkbmwlthikalngokhcr eriyk efrmaedrkking frame dragging phlcixxedsikaelaefrmaedrkkingmikarthdsxbaelwdwykarthdlxngdawethiymkrawitiophrbbisungplxyinpi 2004 odyphllphthyunynwasmphththphaphmikhwamaemnyaxyuphayin 0 5 thung 15 tamladb ineduxnthnwakhm 2008 dwymatrthanckrwal khwamonmthwngtlxdrabbsuriyamixxn enuxngcakphltangrahwangkarphyakrnkhxngthvsdiixnsitnaelaniwtncaehnphlmakthisudemuxkhwamonmthwngekhm nkfisikscungmikhwamsnicmananinkarthdsxbphlkhxngsmphththphaphtang insphaphaewdlxmthimisnamkhwamonmthwngekhmodyepriybethiyb cnepnipiddwykarsngektphlsarkhuxyangaemnya inrabbdawvksdngklaw dawniwtrxnthixdaennxyangsungsxngdwngotcrrxbknaelakn mixyangnxydwnghnungepnphlsar wtthuthangdarasastrthiplxylakhlunwithyuxyangaenn lakhlundngklawmathungolkdwyrayahangsmaesmxmak khlaykbthilaaesngpraphakharthihmunxyuhmaykhwamwaphusngektcaehnpraphakharkraphrib aelasamarthsngektidprahnungchudphlsthimikhwamsmaesmxsung smphththphaphthwipthanaykhwamphnaeprthicaephaacakkhwamsmaesmxkhxngphlswithyuni twxyangechn bangkhrngemuxkhlunwithyuphanekhaikldawniwtrxnxikdwnghnung khlunkhwrebnipdwyphlkhxngsnamkhwamonmthwngdawvks rupaebbphlsthisngektidnnmikhwamiklekhiyngkbthismphththphaphthwipthanayiwxyangnaprathbic chudkarsngektcaephaahnungmikhwamsmphnthkbkarprayuktechingptibtithiepnpraoychnxyangehnidchd klawkhux rabbnathangdwydawethiymxyangrabbkahndtaaehnngbnolksungichthngkarrabutaaehnngxyangaemnyaaelakarcbewla rabbdngklawxasynalikaxatxmsxngchud khux nalikathixyubndawethiymthiokhcrrxbolk aelanalikaxangxingthitngxyubnphiwolk smphththphaphthwipphyakrnwanalikasxngchudnikhwredindwyxtratangknelknxy enuxngcakkarekhluxnthithitangkn xnepnphlthiphyakrniwtamsmphththphaphphiessaelw aelataaehnngthitangkninsnamkhwamonmthwngkhxngolk ephuxrbpraknkhwamaemnyakhxngrabb nalikabndawethiymcachalngdwypccysmphththphaph hruxmikarthaihpccynnepnswnhnungkhxngxlkxrithumkarpraemin chann karthdsxbkhwamaemnyakhxngrabb odyechphaaxyangyingkarwdxyangthithwnmaksungepnswnhnungkhxngbthniyamewlasaklechingphikd epnkhxphisucnchdecnkhxngkhwamsmehtusmphlkhxngkarphyakrnsmphththphaph mikarthdsxbxyangxuncanwnhnungthiphisucnkhwamthuktxngkhxnghlkkaarsmmulchbbtang sahrbkarklawxyangekhmngwd karwdkarkhyaykhnadkhxngewlacakkhwamonmthwngthnghmdepnkarthdsxbchbbxxnkhxnghlkkarnn imichkarthdsxbsmphththphaphthwip cnthungpccubn smphththphaphthwipphankarthdsxbechingsngektthnghmdkarprayuktthangfisiksdarasastraebbcalxngthiyudsmphththphaphthwipmibthbathsakhyinwichafisiksdarasastr khwamsaerckhxngaebbcalxngehlaniyingepnhlkthankhwamthuktxngkhxngthvsdi elnskhwamonmthwng phaphkhwasarxnhangiklediywknsiphaphsungphlitdwyelnskhwamonmthwng phunhnathixyuiklkwamakkhux hkhraselns dwyaesngmikarebninsnamkhwamonmthwng cungepnipidthiaesngkhxngwtthuthihangiklmathungphusngektinwithitngaetsxngwithikhunip twxyangechn aesngkhxngwtthuthixyuhangiklmakxyangkhwasarsamarthphantadanhnungkhxngdarackrkhnadmhumaaelamikareliywebnelknxyephuxmathungphusngektbnolk khnathiaesngphandantrngkhamkhxngdarackrediywknnnkmikareliywebnechnkn cungmathungphusngektediywkncakthisthangtangipelknxy phlkhux phusngektkhnnncaehnwtthudarasastrhnungincudsxngcudbnthxngfa ofkschnidnithrabkndiwaphbinelnsta channphlcakkhwamonmthwngnicungeriyk elnskhwamonmthwng darasastrechingsngektkarnichphlkhxngelnsepnekhruxngmuxsakhyinkarxnumankhunsmbtikhxngwtthuelns aeminkrnithiwtthunnimsamarthehnidodytrng rupthrngkhxngphaphcakelnsihsarsnethsekiywkbkarkracaymwlthiepnsaehtukhxngkarebnaesng odyechphaaxyangying elnskhwamonmthwngepnthanghnunginkarwdkarkracaykhxngssarmud sungimmiaesngaetsamarthsngektidechphaacakphlkhwamonmthwngkhxngmn karprayuktthinasnicepnphiessidaekkarsngektkhnadihy thithimwlcakelnsaephxxkepnbriewnkwangsakhyinexkphphthisngektid aelasamarthichihidmasungsarsnethsekiywkbkhunsmbtikhnadihyaelawiwthnakarkhxngckrwalni khlunkhwamonmthwng khlunkhwamonmthwng gravitational wave sungepnphlsubenuxngodytrngxyanghnungkhxngthvsdikhxngixnsitn epnkarbidebiywkhxngerkhakhnitthisngphandwykhwamerwaesng aelasamarthkhidesmuxnepnriwkhluninpriphumi ewlaid thngni imkhwrsbsnkbkhlunonmthwng gravity wave khxngphlsastrkhxngihl sungepnmonthsnxikeruxnghnung ineduxnkumphaphnth 2016 thimaexdaewnsilokprakaswasngektkhlunkhnwamonmthwngodytrngcakkarrwmhlumdaid sahrbkarsngektodyxxm phlkhxngkhlunkhwamonmthwngphbidinkarsngektrabbdawvkskhubangrabb dawvkskhudngklawokhcrrxbkn aelakhnathiokhcrrxbknnnkkhxy esiyphlngnganodyaephkhlunkhwamonmthwngxxkma sahrbdawvksthrrmdaxyangdwngxathity karesiyphlngngannicaelknxyekinipcntrwcimphb aetkaresiyphlngngannisngektidinpi 1974 inphlsarkhuchux PSR1913 16 inrabbdngklaw dawvksthiokhcrrxbkndwnghnungepnphlsar cungmiphllphthsxngprakar khux hnung phlsarepnwtthuhnaaennyingywdthieriyk dawniwtrxn thikarplxykhlunkhwamonmthwngmikhwamekhmkwadawvksthrrmda aelasxng phlsaraephlarngsiaemehlkiffaaekhb cakkhwaemehlkkhxngmn emuxphlsarhmun larngsicakwadphanolk sungcaehnladngklawepnchudphlswithyusmaesmxduceruxinthaelehnaesngkaphribsmaesmxcakaesngthihmuninpraphakhar rupaebbphlswithyuthismaesmxnithahnathiesmuxnepn nalika thiaemnyasung samarthichkaewlakhabkarokhcrkhxngdawvkskhuid aelamikartxbsnxngxyangiwtxkarbidebiywkhxngpriphumi ewlainlaaewktidkbmn phukhnphb PSR1913 16 rsesl hlsaelaocesf ethyelxridrbrangwloneblsakhafisiksinpi 1993 nbaetnn mikarkhnphbphlsarkhuxunxikhlayrabb karkhnphbthimipraoychnsungsudidaekrabbthidawthngsxngdwngepnphlsar ephraacaihkarthdsxbthiaemnyakhxngsmphththphaphthwip pccubnmiekhruxngtrwccbkhlunkhwamonmthwngbnphundincanwnhnungdaeninkarxyu aelapharkicplxyekhruxngtrwccbbnxwkas ilsa LISA kalngxyurahwangkarphthna odymipharkickxnhna ilsaphathifnedxr sungmikarplxyinpi 2015 karsngektkhlunkhwamonmthwngsamarthichephuxihidsarsnethsekiywkbwtthuenuxaennxyangdawniwtrxnaelahlumdaid aelayngichephuxsxbhasphaphkhxngexkphphchwngaerkessesiywwinathihlngbikaebng hlumda ectthiidphlngngancakhlumdathimacakbriewnicklangkhxngdarackremsiey 87 smphththphaphthwipphyakrnwaemuxmwlkracukxyuinbriewnpriphumithimienuxaennephiyngphxcaekidhlumda hlumdaepnbriewnkhxngpriphumithiphlkhwamonmthwngekhmesiycnaesngkhnixxkmaimid khidknwahlumdabangchnidepnkhnsudthayinwiwthnakarkhxngdawvkskhnadmhuma xikdanhnung mikarsnnisthanwahlumdamwlywdyingthimimwlhlaylanthunghlayphnlanethakhxngdwngxathityxyuinicklangkhxngdarackrswnihy aelamibthbathsakhyinaebbcalxngpccubnwithikarkxkaeniddarackrinchwnghlayphnlanpithiphanma ssarthitklngsuwtthuenuxaennepnklikthimiprasiththiphaphthisudklikhnungsahrbkarpldplxyphlngnganinrupkaraephrngsi aelassarthitklngsuhlumdaechuxwaepntwkarihekidpraktkarnthangdarasastrthiswangthisudpraktkarnhnungethathicintnakarid twxyangsingthinasnicxyangyingoddednsahrbnkdarasastridaekkhwasaraelaniwekhliysdarackrkmmntchnidxun phayitphawathithuktxng ssarthitklngsasmxyurxbhlumdasamarthnaipsukarkxkaenidect jet sungepnlassarrwmpliwxxksuxwkasdwykhwamerwekuxbethakhwamerwaesng mikhunsmbtihlayprakarthithaihhlumdaepnbxekidkhxngkhlunkhwamonmthwngthimioxkasepnipidmakthisud ehtuphlhnungkhuxhlumdaepnwtthuenuxaennthisudthisamarthokhcrrxbknaelaknepnswnhnungkhxngrabbdawkhuid phlkhux khlunkhwamonmthwngthipldplxyxxkmacakrabbdngklawcaekhmepnphiess xikehtuphlhnungsubenuxngcaksingthieriykwathvsdibthkhwamepnidxyangediywkhxnghlumda khuxemuxewlaphaniphlumdacayngmiechphaakhunlksnaaetktangnxythisud thvsdibthehlaniidchuxwa thvsdi irkhn odyimkhunxyukbrupthrngerkhakhnittngtn twxyangechn inrayayaw karyubtwkhxnglukbaskssarinthangthvsdicaimsngphlihekidhlumdathrnglukbask aethlumdathiekidkhuncakimaetktangkbhlumdathiekidcakkaryubtwkhxngmwlthrngklm inkarepliynphanrupthrngklm hlumdathiekidcakkaryubtwkhxngrupthrngthisbsxnmakkhuncapldplxykhlunkhwamonmthwng ckrwalwithya lksnasakhythisudxyanghnungkhxngsmphththphaphthwipkhuxsamarthichidkbexkphphthnghmd cudsakhykhuxinmatraswnihy exkphphniduehmuxnsrangxyubnesntrngeriybngaymak khux thukkarsngektinpccubnesnxwaodyechliyokhrngsrangkhxngckrwalkhwrkhngedimodypraman odyimkhunxyukbsthanthikhxngphusngekthruxthisthangkhxngkarsngekt exkphphepnenuxediywknaelaixosthrxpi phawaexkrup odypraman exkphphthingayodyepriybethiybnisamarthxthibayiddwyphlechlyngaykhxngsmkarkhxngixnsitn aebbcalxngckrwalwithyakhxngexkphphpccubnidmacakkarrwmphlechlyngay ehlanikbsmphththphaphthwipodythvsdithixthibaykhunsmbtikhxngprimanssarkhxngexkphph idaek xunhphlsastr fisiksniwekhliyraelafisiksxnuphakh tamaebbcalxngehlani exkphphpccubnaehngnithuxkaenidcakphawaxunhphumisungaelahnaaennyingywd thieriyk bikaebng thiemuxpraman 14 000 lanpikxnaelamikarkhyaytwnbaetnn smkarkhxngixnsitnsamarthwangnythwipidodykarephimphcnthieriyk khakhngthickrwalwithya emuxmiphcnnixyu priphumiwangexngcapraphvtitnepnaehlngkhwamonmthwngdungdud hruxthiphbnxykwa phlk ixnsitnnaesnxphcnnikhrngaerkinexksarbukebikpi 1917 wadwyckrwalwithya odymiaerngcungiccaephaamak khux khwamkhidckrwalwithyarwmsmythuxwaexkphaphepnsthit aelatxngxasyxikphcnhnungephuxsrangexkphphaebbcalxngsthitiphayinkrxbkhxngsmphththphaphthwip emuxchdecnwaexkphphimichsthit aetkalngkhyaytw ixnsitncungribthingphcnihmni nbaetsinsudkhristthswrrs 1990 xyangirktam hlkthandarasastrbngchiwakarkhyaytwthimikhwamerngnitxngknkbkhakhngthickrwalwithya hruxethiybethakbphlngnganmudchnidthicaephaaaelaphbthwip kalngsasmxyangkhngthikarwicysmyihmsmphththphaphthwipprasbkhwamsaercxyangmakinkarihkrxbsahrbaebbcalxngthiaemnyasungxthibayklumpraktkarnthangfisikshlayxyangnaprathbic xikdanhnung yngmikhathamthiyngimmikhathamthinasnichlaykhx aelaodyechphaaxyangying twthvsdiodyrwmekuxbaennxnwaimesrcsmburn smphththphaphthwipepnthvsdi hmaykhwamwa thvsdiniimrwmphlkhxngfisikskhwxntm thaihaetktangcakthvsdixntrkiriyaphunthansmyihmxunthnghmd karaeswngsmphththphaphthwipchbbkhwxntmepnpyhathiyngtxngkarkhatxbmulthanthisudkhathamhnunginwichafisiks aemmiphuthachingthimiaewwxyangthvsdikhwamonmthwngechingkhwxntm odyechphaaxyangyingthvsdistringaelakhwamonmthwngechingkhwxntmwngwn aetinpccubnyngimmithvsdithitxngknaelasmburn miphuhwngmayawnanwathvsdikhwamonmthwngechingkhwxntmcakacdkhunlksnathiepnpyhaxikprakarhnungkhxngsmphththphaphthwip idaek karmiphawaexkthankhxngpriphumi ewla phawaexkthanehlaniepnekhtaedn khxbkhm khxngpriphumi ewlasung n thinnerkhakhnitcaniyamimchdecn odymiphlkhuxsmphththphaphthwipcaesiyxanacinkarphyakrn yingipkwann yngmisingthieriykthvsdibthphawaexkthansungphyakrnwaphawaexkthandngklawcatxngmixyuinexkphphhakcayudthuxkdsmphththphaphthwipodyimmikarddaeprthangkhwxntmid twxyangkhunchuxthisud idaek phawaexkthanthismphnthkbexkphphcalxngsungxthibayhlumdaaelacuderimtnkhxngexkphph mikhwamphyayamxuninkarddaeprsmphththphaphthwipinbribthckrwalwithya inaebbcalxngckrwalwithyasmyihm phlngnganswnihyinexkphphxyuinrupthiimekhymikartrwcphbodytrng eriyk phlngnganmudaelassarmud mikhxesnxsungepnthithkethiyngknhlaykhxephuxlbkhwamcaepnphlngnganaelassaraebbthixthibayekhaicidyak odykarddaeprkdthiwadwykhwamonmthwngaelaphlsastrkarkhyaytwkhxngckrwal twxyangechn phlsastrniwtnaebbprbprungihm nxkcakkhwamthathaykhxngphlkhwxntmaelackrwalwithyaaelw karwicyeruxngsmphththphaphthwipyngetmipdwyoxkassahrbkarsarwctxip nksmphththphaphthangkhnitsastrsarwcsphaphkhxngphawaexkthanaelakhunsmbtimulthankhxngsmkarkhxngixnsitn aelakarcalxngkhxmphiwetxrthikhrxbkhlummakkhunkwaaetkxnkhxngpriphumi ewlacaephaa echn priphumi ewlathixthibayhlumdathikalngrwmtwkn kmikardaeninnganaelw tngaetkwaekasibpihlngmikarephyaephrthvsdinikhrngaerk karwicyyingmikhwamekhluxnihwmakwathiekhyechingxrrthkarphthnanimikartidtam echn in Renn 2005 p 110ff inbththi 9 thung 15 khxng Pais 1982 aelain Janssen 2005 khwamsrupkhxngkhwamonmthwngaebbniwtnphbidin Schutz 2003 bththi 2 4 karklawwapyhakhwamonmthwngaebbniwtnsakidicixnsitnkxnpi 1907 hruximnnepnipimid aetekhayxmrbexngwakhwamphyayamxyangcringcngkhrngaerkkhxngekhainkarpranipranxmthvsdinnkbsmphththphaphthwipekidkhuninpinn cf Pais 1982 p 178 mixthibayraylaexiydinbththi 2 khxng Wheeler 1990 aemhlkkarsmmulyngepnswnhnungkhxngxrrthathibaysmyihmkhxngthvsdismphththphaphthwip kyngmikhxaetktangrahwangchbbsmyihmaelamonthsndngedimkhxngixnsitnxyubang cf Norton 1985 echn Janssen 2005 p 64f ixnsitnexngxthibaykhxniinswn XX khxnghnngsuxthiimichphasaethkhnikhkhxngekha Einstein 1961 hlngkhwamkhidkxnhnanikhxngaexrnsth mch ixnsitnyngsarwcaernghnisunyklangaelaaenwethiybkhwamonmthwngkhxngaerng cf Stachel 1989 ixnsitnxthibaykhxniinswn XX khxng Einstein 1961 ekhaphicarnawtthu thithukaekhwn dwyechuxkcakephdanhxngthixyubncrwdthimikhwamerng odycakphayinhxngduehmuxnkhwamonmthwngkalngdungwtthulngdwyaerngthiidsdswnkbmwlkhxngmn aetcakphaynxkcrwdduehmuxnechuxkkalngthayoxnkhwamerngcakcrwdsuwtthu channcatxngmikarxxk aerng ephuxihekidpraktkarndngklaw thicaephaakwakhux karkhanwnkhxngixnsitnsungxthibayinbththi 11b khxng Pais 1982 ichhlkkarsmmul khwamsmmulrahwangaerngonmthwngaelaaerngechuxy aelaphllphthkhxngsmphththphaphphiesssahrbkaraephrkracaykhxngaesngaelasahrbphusngektthimikhwamerng phusngektthimikhwamerngodykarphicarnakrxbxangxingechuxykhnahnunginaetlakhnathismphnthkbphusngektthimikhwamerng phlnisamarthaeplngcaksmphththphaphphiessidodytrng imwaodyducaksthankarnsmmulkhxngphusngektsxngkhninyancrwdthimikhwamernghruxodyducakliftthitk inthngsxngsthankarn kareluxnkhwamthimikhabrryayethiybthethaepnkareluxndxphephlxrrahwangkrxbxangxinghnung sahrbbthaeplngxyangngaykhxngphlni du Harrison 2002 dubththi 12 khxng Mermin 2005 Cf Ehlers amp Rindler 1997 sahrbkarnaesnxthiimichphasaethkhnikh du Possel 2007 mixthibayphlnakhunlngehlaniaelaphlxunin Wheeler 1990 pp 83 91 kartikhwamnakhunlngaelaerkhakhnitmixthibayinbththi 5 khxng Wheeler 1990 karphthnainprawtisastrswnnimitidtamin Pais 1982 swn 12b sahrbkarnaesnxmonthsnpriphumi ewlaradbprathm duswnaerkkhxngbththi 2 khxng Thorne 1994 aela Greene 2004 p 47 61 karcdkarthismburnkwainradbkhxnkhangprathmphbid echn in Mermin 2005 aelain Wheeler 1990 bththi 8 aela 9 Marolf Donald 1999 Spacetime Embedding Diagrams for Black Holes General Relativity and Gravitation 31 919 944 gr qc 9806123 Bibcode 1999GReGr 31 919M doi 10 1023 A 1026646507201 du Wheeler 1990 bththi 8 aela 9 sahrbnithsnxyangchdecnsahrbpriphumi ewlathimikhwamokhng khwamlabakkhxngixnsitninkarkhnphbsmkarsnamthithuktxngsubidinbththi 13 15 khxng Pais 1982 echn p xi in Wheeler 1990 bnthukxyanglaexiydthithwnaetyngsamarthekhaicidkhxngerkhakhnitechingxnuphnthaelakarprayuktinsmphththphaphthwipphbidin Geroch 1978 dubththi 10 khxng Wheeler 1990 xnthicring emuxerimtncakthvsdismburn smkarkhxngixnsitnsamarthichaeplngkdkarekhluxnthithisbsxnkwasahrbssarwaepnphllphthkhxngerkhakhnitid aetemuxaelpngcakkarekhluxnthikhxngxnuphakhthdsxbinxudmkhtiniimichnganelk cf Poisson 2004 khaxthibayngay khxngkhwamsmmulmwl phlngnganhaidinswn 3 8 aela 3 9 khxng Giulini 2005 dubththi 6 khxng Wheeler 1990 sahrbbthniyamlngraylaexiydmakkwakhxngemtrik aetepnaebbimepnthangkarkwaemuxethiybkbkarnaesnxintaraeriyn dubththi 14 4 khxng Penrose 2004 mikarsarwckhwamhmayerkhakhnitkhxngsmkarixnsitninbththi 7 aela 8 khxng Wheeler 1990 cf klxng 2 6 in Thorne 1994 bthnathiichechphaakhnitsastrxyangngaymak miihinbththi 19 khxng Schutz 2003 phlechlysakhythisudmiaesdngraykarintarasmphththphaphthwipthukelm sahrbbthsrup phasaethkhnikh khxngkhwamekhaicpccubnkhxngera du Friedrich 2005 hakcaklawihaemnyakwa karwdehlaniepnkarwdtaaehnngdawekhraahaebb Very long baseline interferometry VLBI dubththi 5 khxng Will 1993 aelaswn 3 5 khxng Will 2006 sahrbkarwdinxdit du Hartl 2005 Kennefick 2005 aela Kennefick 2007 karaeplngdngedimkhxngosldenxrinkrxbthvsdikhxngniwtnkhux von Soldner 1804 sahrbkarwdthiethiyngtrngthisudinpccubn du Bertotti 2005 du Kennefick 2005 aelabththi 3 khxng Will 1993 sahrbkarwdsirixusbi du Trimble amp Barstow 2007 Pais 1982 Mercury on pp 253 254 karmichuxesiyngkhunmakhxngixnsitninswn 16b aela 16c Everitt C W F Parkinson B W 2009 Gravity Probe B Science Results NASA Final Report PDF subkhnemux 2009 05 02 Kramer 2004 bnthukthiekhaicngaykhxngpraktkarnsmphththphaphinrabbkahndtaaehnngbnolkphbidin Ashby 2002 miihraylaexiydin Ashby 2003 bthnakarthdsxbsmphththphaphthwipthiekhaicngayxyuin Will 1993 bnthukthiichsphthethkhnikhmakkwaaelathnsmykwadu Will 2006 erkhakhnitkhxngsthankarndngklawmikarsarwcinbththi 23 khxng Schutz 2003 bthnaelnskhwamonmthwngaelakarprayuktphbidinewbephc Newbury 1997 aela Lochner 2007 LIGO Scientific Collaboration and Virgo Collaboration B P Abbott aelakhna 2016 Observation of Gravitational Waves from a Binary Black Hole Merger Physical Review Letters 116 6 061102 1602 03837 Bibcode 2016PhRvL 116f1102A doi 10 1103 PhysRevLett 116 061102 PMID 26918975 Schutz 2003 pp 317 321 Bartusiak 2000 pp 70 86 karkhnhakhlunkhwamonmthwngmixthibayin Bartusiak 2000 aelain Blair amp McNamara 1997 sahrbphaphrwmprawtisastrfisikshlumdanbaeterimtnintnkhriststwrrsthi 20 thungsmyihm dubnthukthixanidngaykhxng Thorne 1994 sahrbbnthukthnsmywadwybthbathkhxnghlumdainkarkxkaenidokhrngsrang du Springel et al 2005 khwamyxodysrupphbidinbthkhwamthiekiywkhxngkn Gnedin 2005 dubththi 8 khxng Sparke amp Gallagher 2007 aela Disney 1998 karcdkarthithithwnkwa aetekiywkhxngkbkhnitsastrnxykwaodyepriybethiybphbin Robson 1996 bthnaradbprathmsuthvsdibthkhwamepnidxyangediywkhxnghlumdaphbidin Chrusciel 2006 aelain Thorne 1994 pp 272 286 sarsnethsodylaexiydphbidin Ned Wright s Cosmology Tutorial and FAQ Wright 2007 bthnathiekhaicngaymakidaek Hogan 1999 Berry 1989 ichkhnitsastrradbtakwapriyyatriaeteliyngekhruxngmuxkhnitsastrkhnsungkhxngsmphththphaphthwip aelaihkarnaesnxthithithwnkwa nganwicykhxngixnsitnidaek Einstein 1917 khaxthibaythidikhxngphthnakarsmyihmyingkhunphbidin Cowen 2001 aela Caldwell 2004 Cf Maddox 1998 pp 52 59 aela 98 122 Penrose 2004 swn 34 1 aelabththi 30 dwykarmungsnicthvsdistring karkhnhakhwamonmthwngechingkhwxntmmixthibayin Greene 1999 sahrbbnthukcakmummxngkhxngkhwamonmthwngechingkhwxntmwngwn du Smolin 2001 sahrbssarmud du Milgrom 2002 sahrbphlngnganmud du Caldwell 2004 bthptithsnpyhatang aelaethkhnikhthikalngmikarphthnaephuxexachnapyha du Lehner 2002 cuderimtnthidisahrbphaphcbkarwicyinpccubnekiywkberuxngsmphththphaphkhuxwarsarptithsnxielkthrxniks Living Reviews in Relativity 2016 12 27 thi ewyaebkaemchchinxangxingAshby Neil 2002 Relativity and the Global Positioning System PDF Physics Today 55 5 41 47 Bibcode 2002PhT 55e 41A doi 10 1063 1 1485583 Ashby Neil 2003 Living Reviews in Relativity 6 1 Bibcode 2003LRR 6 1A doi 10 12942 lrr 2003 1 khlngkhxmulekaekbcakaehlngedimemux 2007 07 04 subkhnemux 2007 07 06 Bartusiak Marcia 2000 Einstein s Unfinished Symphony Listening to the Sounds of Space Time Berkley ISBN 978 0 425 18620 6 Berry Michael V 1989 Principles of Cosmology and Gravitation 2nd ed Institute of Physics Publishing ISBN 0 85274 037 9 2005 The Cassini Experiment Investigating the Nature of Gravity in Renn Jurgen b k One hundred authors for Einstein Wiley VCH pp 402 405 ISBN 3 527 40574 7 McNamara Geoff 1997 Ripples on a Cosmic Sea The Search for Gravitational Waves Perseus ISBN 0 7382 0137 5 Caldwell Robert R 2004 Dark Energy Physics World 17 37 42 doi 10 1088 2058 7058 17 5 36 Chrusciel Piotr 2006 How many different kinds of black hole are there khlngkhxmulekaekbcakaehlngedimemux 2011 04 14 subkhnemux 2007 07 15 Cowen Ron 2001 A Dark Force in the Universe Science News Society for Science amp 38 159 14 218 doi 10 2307 3981642 JSTOR 3981642 Disney Michael 1998 A New Look at Quasars Scientific American 278 6 52 57 Bibcode 1998SciAm 278f 52D doi 10 1038 scientificamerican0698 52 Ehlers Jurgen 1997 Local and Global Light Bending in Einstein s and other Gravitational Theories General Relativity and Gravitation 29 4 519 529 Bibcode 1997GReGr 29 519E doi 10 1023 A 1018843001842 Einstein Albert 1917 Kosmologische Betrachtungen zur allgemeinen Relativitatstheorie Sitzungsberichte der Preussischen Akademie der Wissenschaften 142 Einstein Albert 1961 Relativity The special and general theory Crown Publishers Friedrich Helmut 2005 Is general relativity essentially understood Annalen der Physik 15 1 2 84 108 gr qc 0508016 Bibcode 2006AnP 518 84F doi 10 1002 andp 200510173 Geroch Robert 1978 General relativity from A to B University of Chicago Press ISBN 0 226 28864 1 Giulini Domenico 2005 Special relativity A first encounter Oxford University Press ISBN 0 19 856746 4 Gnedin Nickolay Y 2005 Digitizing the Universe Nature 435 7042 572 573 Bibcode 2005Natur 435 572G doi 10 1038 435572a PMID 15931201 1999 The Elegant Universe Superstrings Hidden Dimensions and the Quest for the Ultimate Theory Vintage ISBN 0 375 70811 1 2004 A A Knopf Bibcode 2004fcst book G ISBN 0 375 41288 3 Harrison David M 2002 A Non mathematical Proof of Gravitational Time Dilation PDF subkhnemux 2007 05 06 Hartl Gerhard 2005 The Confirmation of the General Theory of Relativity by the British Eclipse Expedition of 1919 in Renn Jurgen b k One hundred authors for Einstein Wiley VCH pp 182 187 ISBN 3 527 40574 7 Hogan Craig J 1999 The Little Book of the Big Bang A Cosmic Primer Springer ISBN 0 387 98385 6 Janssen Michel 2005 PDF Annalen der Physik 14 S1 58 85 Bibcode 2005AnP 517S 58J doi 10 1002 andp 200410130 khlngkhxmulekaekbcakaehlngedim PDF emux 2017 07 13 subkhnemux 2019 04 19 Kennefick Daniel 2005 Astronomers Test General Relativity Light bending and the Solar Redshift in Renn Jurgen b k One hundred authors for Einstein Wiley VCH pp 178 181 ISBN 3 527 40574 7 Kennefick Daniel 2007 Not Only Because of Theory Dyson Eddington and the Competing Myths of the 1919 Eclipse Expedition Proceedings of the 7th Conference on the History of General Relativity Tenerife 2005 vol 0709 p 685 0709 0685 Bibcode 2007arXiv0709 0685K Kramer Michael 2004 Millisecond Pulsars as Tools of Fundamental Physics in Karshenboim S G Peik E b k Astrophysics Clocks and Fundamental Constants Lecture Notes in Physics Vol 648 Springer pp 33 54 E Print at astro ph 0405178 2017 11 05 thi ewyaebkaemchchin Lehner Luis 2002 Numerical Relativity Status and Prospects Proceedings of the 16th International Conference on General Relativity and Gravitation held 15 21 July 2001 in Durban p 210 gr qc 0202055 Bibcode 2002grg conf 210L doi 10 1142 9789812776556 0010 ISBN 978 981 238 171 2 Lochner Jim b k 2007 Imagine the Universe website NASA GSFC khlngkhxmulekaekbcakaehlngedimemux 2007 06 17 subkhnemux 2007 06 12 1998 What Remains To Be Discovered Macmillan ISBN 0 684 82292 X 2005 It s About Time Understanding Einstein s Relativity Princeton University Press ISBN 0 691 12201 6 Milgrom Mordehai 2002 Does dark matter really exist Scientific American 287 2 30 37 Bibcode 2002SciAm 287b 42M doi 10 1038 scientificamerican0802 42 Norton John D 1985 What was Einstein s principle of equivalence PDF Studies in History and Philosophy of Science 16 3 203 246 doi 10 1016 0039 3681 85 90002 0 subkhnemux 2007 06 11 Newbury Pete 1997 Gravitational lensing webpages khlngkhxmulekaekbcakaehlngedimemux 2012 12 06 subkhnemux 2007 06 12 Nieto Michael Martin 2006 PDF EurophysicsNews 37 6 30 34 gr qc 0702017 Bibcode 2006ENews 37 30N doi 10 1051 epn 2006604 khlngkhxmulekaekbcakaehlngedim PDF emux 2007 06 29 1982 Subtle is the Lord The Science and life of Albert Einstein Oxford University Press ISBN 0 19 853907 X 2004 The Road to Reality A A Knopf ISBN 0 679 45443 8 Possel M 2007 The equivalence principle and the deflection of light khlngkhxmulekaekbcakaehlngedimemux 2007 05 03 subkhnemux 2007 05 06 Poisson Eric 2004 The Motion of Point Particles in Curved Spacetime Living Rev Relativ 7 gr qc 0306052 Bibcode 2004LRR 7 6P doi 10 12942 lrr 2004 6 subkhnemux 2007 06 13 Renn Jurgen b k 2005 Albert Einstein Chief Engineer of the Universe Einstein s Life and Work in Context Berlin Wiley VCH ISBN 3 527 40571 2 Robson Ian 1996 Active galactic nuclei John Wiley ISBN 0 471 95853 0 Schutz Bernard F 2003 Gravity from the ground up Cambridge University Press ISBN 0 521 45506 5 2001 Basic ISBN 0 465 07835 4 von Soldner Johann Georg 1804 Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung durch die Attraktion eines Weltkorpers an welchem er nahe vorbei geht Berliner Astronomisches Jahrbuch 161 172 Sparke Linda S Gallagher John S 2007 Galaxies in the universe An introduction Cambridge University Press ISBN 0 521 85593 4 Springel Volker White Simon D M Jenkins Adrian Frenk Carlos S Yoshida N Gao L Navarro J Thacker R Croton D aelakhna 2005 Simulations of the formation evolution and clustering of galaxies and quasars PDF Nature 435 7042 629 636 astro ph 0504097 Bibcode 2005Natur 435 629S doi 10 1038 nature03597 PMID 15931216 1989 The Rigidly Rotating Disk as the Missing Link in the History of General Relativity in Howard D Stachel J b k Einstein and the History of General Relativity Einstein Studies Vol 1 Birkhauser pp 48 62 ISBN 0 8176 3392 8 1994 Black Holes and Time Warps Einstein s Outrageous Legacy W W Norton amp Company ISBN 0 393 31276 3 Barstow Martin 2007 Gravitational redshift and White Dwarf stars khlngkhxmulekaekbcakaehlngedimemux 2011 08 28 subkhnemux 2007 06 13 1990 A Journey Into Gravity and Spacetime Scientific American Library San Francisco W H Freeman ISBN 0 7167 6034 7 1993 Was Einstein Right Oxford University Press ISBN 0 19 286170 0 2006 The Confrontation between General Relativity and Experiment Living Rev Relativ 9 3 gr qc 0510072 Bibcode 2006LRR 9 3W doi 10 12942 lrr 2006 3 subkhnemux 2007 06 12 Wright Ned 2007 Cosmology tutorial and FAQ University of California at Los Angeles subkhnemux 2007 06 12aehlngkhxmulxunwikimiediykhxmmxnsmisuxthiekiywkhxngkb bthnathvsdismphththphaphthwip Einstein Online 2014 06 01 thi ewyaebkaemchchin Website featuring articles on a variety of aspects of relativistic physics for a general audience hosted by the