กฎการเคลื่อนที่ของดาวเคราะห์ของเค็พเพลอร์ (อังกฤษ: Kepler's laws of planetary motion) คือกฎทางคณิตศาสตร์ 3 ข้อที่กล่าวถึงการเคลื่อนที่ของดาวเคราะห์ในระบบสุริยะ นักคณิตศาสตร์และนักดาราศาสตร์ชาวเยอรมันชื่อ โยฮันเนิส เค็พเพลอร์ (พ.ศ. 2114–2173) เป็นผู้ค้นพบ
เค็พเพลอร์ได้ศึกษาการสังเกตการณ์ของนักดาราศาสตร์ผู้มีชื่อเสียงชาวเดนมาร์กชื่อทือโก ปราเออ โดยประมาณ พ.ศ. 2148 เค็พเพลอร์พบว่าการสังเกตตำแหน่งของดาวเคราะห์ของบราห์เป็นไปตามกฎง่าย ๆ ทางคณิตศาสตร์
กฎของเค็พเพลอร์ท้าทายดาราศาสตร์สายอริสโตเติลและสายทอเลมีและกฎทางฟิสิกส์ในขณะนั้น เค็พเพลอร์ยืนยันว่าโลกเคลื่อนที่เป็นวงรีมากกว่าวงกลม และยังได้พิสูจน์ว่าความเร็วการเคลื่อนที่มีความผันแปรด้วย ซึ่งเป็นการเปลี่ยนแปลงความรู้ทางดาราศาสตร์และฟิสิกส์ อย่างไรก็ดี คำอธิบายเชิงฟิสิกส์เกี่ยวกับพฤติกรรมของดาวเคราะห์ก็ได้ปรากฏชัดเจนได้ในอีกเกือบศตวรรษต่อมา เมื่อไอแซก นิวตัน สามารถสรุปกฎของเค็พเพลอร์ได้ว่าเข้ากันกับกฎการเคลื่อนที่และกฎความโน้มถ่วงสากลของนิวตันเองโดยใช้วิชาแคลคูลัสที่เขาคิดสร้างขึ้น รูปจำลองแบบอื่นที่นำมาใช้มักให้ผลผิดพลาด
กฎ 3 ข้อของเค็พเพลอร์
- วงโคจรของดาวเคราะห์ทุกดวงเป็นวงรี โดยมีดวงอาทิตย์เป็นจุดศูนย์กลางจุดหนึ่ง วงรีเกิดจากการมีจุดศูนย์กลาง 2 ศูนย์ ดังภาพ ดังนั้นเค็พเพลอร์จึงคัดค้านความเชื่อในแนวของอริสโตเติล ปโตเลมีและโคเปอร์นิคัสที่ว่าวงโคจรเป็นวงกลม
- ในขณะที่ดาวเคราะห์เคลื่อนไปในวงโคจร เส้นตรงที่เชื่อมระหว่างดาวเคราะห์กับดวงอาทิตย์กวาดพื้นที่เท่า ๆ กันในระยะเวลาเท่ากัน ซึ่งหมายความว่าดาวเคราะห์โคจรเร็วกว่าเมื่ออยู่ใกล้ดวงอาทิตย์และช้าลงเมื่ออยู่ห่างดวงอาทิตย์ ด้วยกฎข้อนี้ เค็พเพลอร์ได้ล้มทฤษฎีดาราศาสตร์อริสโตเติลที่ว่าดาวเคราะห์เคลื่อนที่ด้วยความเร็วคงที่
- ของคาบการโคจรของดาวเคราะห์เป็นโดยตรงกับของกึ่งแกนเอก (ครึ่งหนึ่งของความยาววงรี) ของวงโคจร ซึ่งหมายความว่า ไม่เพียงแต่วงโคจรที่ใหญ่กว่าเท่านั้นที่มีระยะเวลานานกว่า แต่อัตราความเร็วของดาวเคราะห์ที่มีวงโคจรทีใหญ่กว่านั้นก็โคจรช้ากว่าวงโคจรที่เล็กกว่าอีกด้วย
กฎของเค็พเพลอร์ได้แสดงไว้ข้างล่าง และเป็นกฎที่มาจากกฎของนิวตันที่ใช้ระบบพิกัดเชิงขั้วศูนย์สุริยะ อย่างไรก็ตาม กฎของเค็พเพลอร์ยังสามารถเขียนอย่างอื่นได้โดยใช้พิกัดคาร์ทีเซียน
รายละเอียดทางคณิตศาสตร์
กฎข้อที่ 1
กฎข้อแรกกล่าวว่า “วงโคจรของดาวเคราะห์ทุกดวงเป็นรูปวงรีที่มีดวงอาทิตย์เป็นจุดโฟกัสจุดหนึ่ง"
คณิตศาสตร์ของวงรีเป็นดังนี้
สมการคือ
โดยที่ p คือ (semi latus rectum) และ ε คือ ความเยื้องศูนย์กลาง (eccentricity) ซึ่งมีค่ามากกว่าหรือเท่ากับศูนย์ และน้อยกว่าหนึ่ง
เมื่อ θ=0° ดาวเคราะห์จะอยู่ที่จุดใกล้ดวงอาทิตย์ที่สุด
เมื่อ θ=90°: r=p และเมื่อ θ=180° ดาวเคราห์จะอยู่ที่จุดไกลดวงอาทิตย์ที่สุด:
กึ่งแกนเอกของวงรี a คือมัชฌิมเลขคณิตของ rmin และ rmax:
กึ่งแกนโทของวงรี b คือมัชฌิมเรขาคณิตของ rmin และ rmax:
นอกจากนี้ยังเป็นมัชฌิมเรขาคณิตระหว่างกึ่งแกนเอกกับกึ่งเลตัสเรกตัม
กฎข้อที่ 2
กฎข้อที่ 2 “เส้นตรงที่เชื่อมระหว่างดาวเคราะห์กับดวงอาทิตย์ กวาดพื้นที่เท่า ๆ กันในระยะเวลาเท่ากัน”
กฎนี้รู้จักในอีกชื่อหนึ่งที่ว่ากฎพื้นที่เท่า ซึ่งเป็นผลสืบเนื่องโดยตรงจากกฎการอนุรักษ์โมเมนตัมเชิงมุม โปรดดูการการอนุพัทธ์ดังภาพ
การคำนวณมี 4 ขั้นดังนี้
- 1. คำนวณ มุมกวาดเฉลี่ย (mean anomaly) M จากสูตร
- 2. คำนวณ มุมกวาดเยื้องศูนย์กลาง eccentric anomaly E โดยการแก้ สมการของเค็พเพลอร์:
- 3. คำนวณ มุมกวาดจริง (true anomaly) θ โดยใช้สมการ:
- 4. คำนวณ ระยะห่างศูนย์สุริยะ (heliocentric distance) r จากกฎข้อแรก:
กฎข้อที่ 3
กฎข้อที่ 3 “ของคาบการโคจรของดาวเคราะห์เป็นโดยตรงกับของกึ่งแกนเอกของวงโคจร” ดังนั้น ไม่เพียงความยาววงโคจรจะเพิ่มด้วยระยะทางแล้ว ความเร็วของการโคจรจะลดลงด้วย การเพิ่มของระยะเวลาการโคจรจึงเป็นมากกว่าการเป็นสัดส่วน
- = คาบการโคจรของดาวเคราะห์
- = แกนกึ่งเอกของวงโคจร
ดังนั้น P2·a–3 มีค่าเหมือนกันสำหรับดาวเคราะห์ทุกดวงในระบบสุริยะรวมทั้งโลก เมื่อหน่วยหนึ่งถูกเลือก เช่น P ที่วัดเป็นปีดาราคติ และ a ในหน่วยดาราศาสตร์ P2·a–3 มีค่า 1 สำหรับดาวเคราะห์ทุกดวงในระบบสุริยะ ในหน่วยเอสไอ:
ตำแหน่งในฟังก์ชันของเวลา
ปัญหาเค็พเพลอร์อนุมานการโคจรวงรีและจุด 4 จุด:
- s ดวงอาทิตย์ (ณ โฟกัสหนึ่งของวงรี);
- z จุดใกล้ดวงอาทิตย์ที่สุด
- c ศูนย์กลางของวงรี
- p ดาวเคราะห์
และ
- กึ่งแกนเอก ระยะจากศูนย์กลางถึงจุดใกล้ดวงอาทิตย์ที่สุด นั่นคือกึ่งแกนเอก
- ความเยื้องศูนย์กลาง
- กึ่งแกนโท
- ระยะจากดวงอาทิตย์ถึงดาวเคราะห์
- ตำแหน่งดาวเคราะห์ตามที่เห็นจากดวงอาทิตย์ นั่นคือ มุมกวาดจริง
ปัญหาคือการคำนวณพิกัดเชิงขั้ว (r,ν) ของดาวเคราะห์จากเวลานับตั้งแต่ดาวเคราะห์ผ่านจุดใกล้ดวงอาทิตย์ที่สุด, t
และ
- , y จากที่เห็นจากศูนย์กลาง นั่นคือมุมกวาดเฉลี่ย
: ,
โดย T คือคาบการโคจร
Division by a²/2 gives Kepler's equation
- .
to get
จะได้
คูณด้วย (1+ε)/(1−ε) และใส่รากที่สอง จะได้ผลลัพธ์
ในขั้นที่สามนี้เราจะได้ความเชื่อมโยงกันระหว่างเวลากับตำแหน่งในวงโคจร
ขั้นที่สี่คือการคำนวณระยะห่างศูนย์สุริยะ r จากมุมกวาดจริง ν ด้วยกฎข้อแรกของเค็พเพลอร์:
การอนุพัทธ์ (Derivation) กฎของนิวตัน
การอนุพัทธ์ของกฎเค็พเพลอร์ข้อที่ 2
where is the tangential unit vector, and
So the position vector
is differentiated twice to give the velocity vector and the acceleration vector
Note that for constant distance, , the planet is subject to the centripetal acceleration, , and for constant angular speed, , the planet is subject to the coriolis acceleration, .
Inserting the acceleration vector into Newton's laws, and dividing by m, gives the vector
Equating component, we get the two of motion, one for the radial acceleration and one for the tangential acceleration:
ไม่สามารถแยกวิเคราะห์ได้ (SVG (สามารถเปิดใช้งาน MathML ผ่านปลั๊กอินของเบราว์เซอร์): การตอบสนองที่ไม่ถูกต้อง ("Math extension cannot connect to Restbase.") จากเซิร์ฟเวอร์ "http://localhost:6011/th.wikipedia.org/v1/":): {\displaystyle \ r \dot\theta:}
and integrate:
where is a , and exponentiate:
This says that the is a , even if both the distance and the vary.
The area swept out from time t1 to time t2,
depends only on the duration t2−t1. This is Kepler's second law.
การอนุพัทธ์ของกฎเค็พเพลอร์ข้อที่ 1
and get
and
Differentiate
twice:
Substitute into the radial equation of motion
and get
Divide by
These solutions are
where and are arbitrary constants of integration. So the result is
Choosing the axis of the coordinate system such that , and inserting , gives:
If this is Kepler's first law.
กฎเค็พเพลอร์ข้อที่ 3
where:
- T = planet's sidereal period
- r = radius of the planet's circular orbit
- G = the gravitational constant
- M = mass of the sun
โดย:
- T = object's sidereal period
- a = object's semimajor axis
- G = the gravitational constant = 6.67 × 10−11 N • m²/kg²
- M = mass of one object
- m = mass of the other object
อ้างอิง
- Hyman, Andrew. "A Simple Cartesian Treatment of Planetary Motion" 2011-08-07 ที่ เวย์แบ็กแมชชีน, European Journal of Physics, Vol. 14, pp. 145-147 (1993).
- "Kepler's Second Law" by Jeff Bryant with Oleksandr Pavlyk, .
ดูเพิ่ม
แหล่งข้อมูลอื่น
- Crowell, Benjamin, Conservation Laws, http://www.lightandmatter.com/area1book2.html 2020-06-01 ที่ เวย์แบ็กแมชชีน, an online book that gives a proof of the first law without the use of calculus. (see section 5.2, p.112)
- David McNamara and Gianfranco Vidali, Kepler's Second Law -JAVA Interactive Tutorial, http://www.phy.syr.edu/courses/java/mc_html/kepler.html 2006-09-10 ที่ เวย์แบ็กแมชชีน, an interactive JAVA applet that aids in the understanding of Kepler's Second Law.
- University of Tennessee's Dept. Physics & Astronomy: Astronomy 161 page on Johannes Kepler: The Laws of Planetary Motion [1]
- Equant compared to Kepler: interactive model [2] 2008-12-26 ที่ เวย์แบ็กแมชชีน
- Kepler's Third Law:interactive model[3] 2008-12-26 ที่ เวย์แบ็กแมชชีน
wikipedia, แบบไทย, วิกิพีเดีย, วิกิ หนังสือ, หนังสือ, ห้องสมุด, บทความ, อ่าน, ดาวน์โหลด, ฟรี, ดาวน์โหลดฟรี, mp3, วิดีโอ, mp4, 3gp, jpg, jpeg, gif, png, รูปภาพ, เพลง, เพลง, หนัง, หนังสือ, เกม, เกม, มือถือ, โทรศัพท์, Android, iOS, Apple, โทรศัพท์โมบิล, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, Sonya, MI, PC, พีซี, web, เว็บ, คอมพิวเตอร์
kdkarekhluxnthikhxngdawekhraahkhxngekhphephlxr xngkvs Kepler s laws of planetary motion khuxkdthangkhnitsastr 3 khxthiklawthungkarekhluxnthikhxngdawekhraahinrabbsuriya nkkhnitsastraelankdarasastrchaweyxrmnchux oyhnenis ekhphephlxr ph s 2114 2173 epnphukhnphbphaphaesdngkd 3 khxkhxngekhphephlxrthimiwngokhcrdawekhraah 2 wng 1 wngokhcrepnwngridwycudofks f1 aela f2 sahrbdawekhraahdwngaerkaela f1 aela f3 sahrbdawekhraahdwngthi 2 dwngxathityxyuthicud f1 2 swnaerenga 2 swn A1 aela A2 miphiwphunethaknaelaewlathidawekhraah 1 thbphunthi A1 ethakbewlathithbphunthi A2 3 ewlarwmkhxngwngokhcrsahrbdawekhraah 1 aeladawekhraah 2 misdswnethakb a13 2 a23 2 displaystyle a1 3 2 a2 3 2 ekhphephlxridsuksakarsngektkarnkhxngnkdarasastrphumichuxesiyngchawednmarkchuxthuxok praexx odypraman ph s 2148 ekhphephlxrphbwakarsngekttaaehnngkhxngdawekhraahkhxngbrahepniptamkdngay thangkhnitsastr kdkhxngekhphephlxrthathaydarasastrsayxrisotetilaelasaythxelmiaelakdthangfisiksinkhnann ekhphephlxryunynwaolkekhluxnthiepnwngrimakkwawngklm aelayngidphisucnwakhwamerwkarekhluxnthimikhwamphnaeprdwy sungepnkarepliynaeplngkhwamruthangdarasastraelafisiks xyangirkdi khaxthibayechingfisiksekiywkbphvtikrrmkhxngdawekhraahkidpraktchdecnidinxikekuxbstwrrstxma emuxixaesk niwtn samarthsrupkdkhxngekhphephlxridwaekhaknkbkdkarekhluxnthiaelakdkhwamonmthwngsaklkhxngniwtnexngodyichwichaaekhlkhulsthiekhakhidsrangkhun rupcalxngaebbxunthinamaichmkihphlphidphladkd 3 khxkhxngekhphephlxrwngokhcrkhxngdawekhraahthukdwngepnwngri odymidwngxathityepncudsunyklangcudhnung wngriekidcakkarmicudsunyklang 2 suny dngphaph dngnnekhphephlxrcungkhdkhankhwamechuxinaenwkhxngxrisotetil potelmiaelaokhepxrnikhsthiwawngokhcrepnwngklm inkhnathidawekhraahekhluxnipinwngokhcr esntrngthiechuxmrahwangdawekhraahkbdwngxathitykwadphunthietha kninrayaewlaethakn sunghmaykhwamwadawekhraahokhcrerwkwaemuxxyuikldwngxathityaelachalngemuxxyuhangdwngxathity dwykdkhxni ekhphephlxridlmthvsdidarasastrxrisotetilthiwadawekhraahekhluxnthidwykhwamerwkhngthi khxngkhabkarokhcrkhxngdawekhraahepnodytrngkbkhxngkungaeknexk khrunghnungkhxngkhwamyawwngri khxngwngokhcr sunghmaykhwamwa imephiyngaetwngokhcrthiihykwaethannthimirayaewlanankwa aetxtrakhwamerwkhxngdawekhraahthimiwngokhcrthiihykwannkokhcrchakwawngokhcrthielkkwaxikdwy kdkhxngekhphephlxridaesdngiwkhanglang aelaepnkdthimacakkdkhxngniwtnthiichrabbphikdechingkhwsunysuriya r 8 displaystyle r theta xyangirktam kdkhxngekhphephlxryngsamarthekhiynxyangxunidodyichphikdkharthiesiynraylaexiydthangkhnitsastrkdkhxthi 1 kdekhphephlxrkhxthi 1 kdkhxaerkklawwa wngokhcrkhxngdawekhraahthukdwngepnrupwngrithimidwngxathityepncudofkscudhnung khnitsastrkhxngwngriepndngni smkarkhux r p1 ϵ cos 8 displaystyle r frac p 1 epsilon cdot cos theta odythi p khux semi latus rectum aela e khux khwameyuxngsunyklang eccentricity sungmikhamakkwahruxethakbsuny aelanxykwahnung emux 8 0 dawekhraahcaxyuthicudikldwngxathitythisud rmin p1 ϵ displaystyle r mathrm min frac p 1 epsilon emux 8 90 r p aelaemux 8 180 dawekhrahcaxyuthicudikldwngxathitythisud rmax p1 ϵ displaystyle r mathrm max frac p 1 epsilon kungaeknexkkhxngwngri a khuxmchchimelkhkhnitkhxng rmin aela rmax a p1 ϵ2 displaystyle a frac p 1 epsilon 2 kungaeknothkhxngwngri b khuxmchchimerkhakhnitkhxng rmin aela rmax b p1 ϵ2 displaystyle b frac p sqrt 1 epsilon 2 nxkcakniyngepnmchchimerkhakhnitrahwangkungaeknexkkbkungeltserktm ab bp displaystyle frac a b frac b p kdkhxthi 2 phaphaesdngkdekhphephlxrkhxthi 2 kdkhxthi 2 esntrngthiechuxmrahwangdawekhraahkbdwngxathity kwadphunthietha kninrayaewlaethakn kdniruckinxikchuxhnungthiwakdphunthietha sungepnphlsubenuxngodytrngcakkdkarxnurksomemntmechingmum oprddukarkarxnuphththdngphaph karkhanwnmi 4 khndngni 1 khanwn mumkwadechliy mean anomaly M caksutrM 2ptP displaystyle M frac 2 pi t P dd 2 khanwn mumkwadeyuxngsunyklang eccentric anomaly E odykaraek smkarkhxngekhphephlxr M E ϵ sin E displaystyle M E epsilon cdot sin E dd 3 khanwn mumkwadcring true anomaly 8 odyichsmkar tan 82 1 ϵ1 ϵ tan E2 displaystyle tan frac theta 2 sqrt frac 1 epsilon 1 epsilon cdot tan frac E 2 dd 4 khanwn rayahangsunysuriya heliocentric distance r cakkdkhxaerk r p1 ϵ cos 8 displaystyle r frac p 1 epsilon cdot cos theta dd kdkhxthi 3 kdkhxthi 3 khxngkhabkarokhcrkhxngdawekhraahepnodytrngkbkhxngkungaeknexkkhxngwngokhcr dngnn imephiyngkhwamyawwngokhcrcaephimdwyrayathangaelw khwamerwkhxngkarokhcrcaldlngdwy karephimkhxngrayaewlakarokhcrcungepnmakkwakarepnsdswn P2 a3 displaystyle P 2 propto a 3 P displaystyle P khabkarokhcrkhxngdawekhraah a displaystyle a aeknkungexkkhxngwngokhcr dngnn P2 a 3 mikhaehmuxnknsahrbdawekhraahthukdwnginrabbsuriyarwmthngolk emuxhnwyhnungthukeluxk echn P thiwdepnpidarakhti aela a inhnwydarasastr P2 a 3 mikha 1 sahrbdawekhraahthukdwnginrabbsuriya inhnwyexsix P2a3 3 00 10 19s2m3 0 7 displaystyle frac P 2 a 3 3 00 times 10 19 frac s 2 m 3 pm 0 7 taaehnnginfngkchnkhxngewla pyhaekhphephlxrxnumankarokhcrwngriaelacud 4 cud s dwngxathity n ofkshnungkhxngwngri z cudikldwngxathitythisud c sunyklangkhxngwngri p dawekhraah aela a cz displaystyle a cz kungaeknexk rayacaksunyklangthungcudikldwngxathitythisud nnkhuxkungaeknexk e cs a displaystyle varepsilon cs over a khwameyuxngsunyklang b a1 e2 displaystyle b a sqrt 1 varepsilon 2 kungaeknoth r sp displaystyle r sp rayacakdwngxathitythungdawekhraah n zsp displaystyle nu angle zsp taaehnngdawekhraahtamthiehncakdwngxathity nnkhux mumkwadcring pyhakhuxkarkhanwnphikdechingkhw r n khxngdawekhraahcakewlanbtngaetdawekhraahphancudikldwngxathitythisud t zsx ab zsp displaystyle zsx frac a b cdot zsp zcy zsx displaystyle zcy zsx aela M zcy displaystyle M angle zcy y cakthiehncaksunyklang nnkhuxmumkwadechliy zcy a2M2 displaystyle zcy frac a 2 M 2 zsp ba zsx ba zcy ba a2M2 abM2 displaystyle zsp frac b a cdot zsx frac b a cdot zcy frac b a cdot frac a 2 M 2 frac abM 2 M 2ptT displaystyle M 2 pi t over T ody T khuxkhabkarokhcr zcy zsx zcx scx displaystyle zcy zsx zcx scx a2M2 a2E2 ae asin E2 displaystyle frac a 2 M 2 frac a 2 E 2 frac a varepsilon cdot a sin E 2 Division by a 2 gives Kepler s equation M E e sin E displaystyle M E varepsilon cdot sin E E M e 18e3 sin M 12e2sin 2M 38e3sin 3M displaystyle E approx M left varepsilon frac 1 8 varepsilon 3 right sin M frac 1 2 varepsilon 2 sin 2M frac 3 8 varepsilon 3 sin 3M cdots a cos E a e r cos n displaystyle a cdot cos E a cdot varepsilon r cdot cos nu ra 1 e21 e cos n displaystyle frac r a frac 1 varepsilon 2 1 varepsilon cdot cos nu to get cos E e 1 e21 e cos n cos n e 1 e cos n 1 e2 cos n1 e cos n e cos n1 e cos n displaystyle cos E varepsilon frac 1 varepsilon 2 1 varepsilon cdot cos nu cdot cos nu frac varepsilon cdot 1 varepsilon cdot cos nu 1 varepsilon 2 cdot cos nu 1 varepsilon cdot cos nu frac varepsilon cos nu 1 varepsilon cdot cos nu tan2 x2 1 cos x1 cos x displaystyle tan 2 frac x 2 frac 1 cos x 1 cos x caid tan2 E2 1 cos E1 cos E 1 e cos n1 e cos n1 e cos n1 e cos n 1 e cos n e cos n 1 e cos n e cos n 1 e1 e 1 cos n1 cos n 1 e1 e tan2 n2 displaystyle tan 2 frac E 2 frac 1 cos E 1 cos E frac 1 frac varepsilon cos nu 1 varepsilon cdot cos nu 1 frac varepsilon cos nu 1 varepsilon cdot cos nu frac 1 varepsilon cdot cos nu varepsilon cos nu 1 varepsilon cdot cos nu varepsilon cos nu frac 1 varepsilon 1 varepsilon cdot frac 1 cos nu 1 cos nu frac 1 varepsilon 1 varepsilon cdot tan 2 frac nu 2 khundwy 1 e 1 e aelaisrakthisxng caidphllphth tan n2 1 e1 e tan E2 displaystyle tan frac nu 2 sqrt frac 1 varepsilon 1 varepsilon cdot tan frac E 2 inkhnthisamnieracaidkhwamechuxmoyngknrahwangewlakbtaaehnnginwngokhcr khnthisikhuxkarkhanwnrayahangsunysuriya r cakmumkwadcring n dwykdkhxaerkkhxngekhphephlxr r a 1 e21 e cos n displaystyle r a cdot frac 1 varepsilon 2 1 varepsilon cdot cos nu karxnuphthth Derivation kdkhxngniwtnkarxnuphththkhxngkdekhphephlxrkhxthi 2 m r M mr2 r G displaystyle m cdot ddot mathbf r frac M cdot m r 2 cdot hat mathbf r cdot G r 8 8 displaystyle dot hat mathbf r dot theta hat boldsymbol theta where 8 displaystyle hat boldsymbol theta is the tangential unit vector and 8 8 r displaystyle dot hat boldsymbol theta dot theta hat mathbf r So the position vector r rr displaystyle mathbf r r hat mathbf r is differentiated twice to give the velocity vector and the acceleration vector r r r rr r r r8 8 displaystyle dot mathbf r dot r hat mathbf r r dot hat mathbf r dot r hat mathbf r r dot theta hat boldsymbol theta r r r r r r 8 8 r8 8 r8 8 r r8 2 r r8 2r 8 8 displaystyle ddot mathbf r ddot r hat mathbf r dot r dot hat mathbf r dot r dot theta hat boldsymbol theta r ddot theta hat boldsymbol theta r dot theta dot hat boldsymbol theta ddot r r dot theta 2 hat mathbf r r ddot theta 2 dot r dot theta hat boldsymbol theta Note that for constant distance r displaystyle r the planet is subject to the centripetal acceleration r8 2 displaystyle r dot theta 2 and for constant angular speed 8 displaystyle dot theta the planet is subject to the coriolis acceleration 2r 8 displaystyle 2 dot r dot theta Inserting the acceleration vector into Newton s laws and dividing by m gives the vector r r8 2 r r8 2r 8 8 GMr 2r displaystyle ddot r r dot theta 2 hat mathbf r r ddot theta 2 dot r dot theta hat boldsymbol theta GMr 2 hat mathbf r Equating component we get the two of motion one for the radial acceleration and one for the tangential acceleration r r8 2 GMr 2 displaystyle ddot r r dot theta 2 GMr 2 r8 2r 8 0 displaystyle r ddot theta 2 dot r dot theta 0 imsamarthaeykwiekhraahid SVG samarthepidichngan MathML phanplkxinkhxngebrawesxr kartxbsnxngthiimthuktxng Math extension cannot connect to Restbase cakesirfewxr http localhost 6011 th wikipedia org v1 displaystyle r dot theta 8 8 2r r 0 displaystyle frac ddot theta dot theta 2 frac dot r r 0 and integrate log 8 2log r log ℓ displaystyle log dot theta 2 log r log ell where log ℓ displaystyle log ell is a and exponentiate r28 ℓ displaystyle r 2 dot theta ell This says that the r28 displaystyle r 2 dot theta is a even if both the distance r displaystyle r and the 8 displaystyle dot theta vary The area swept out from time t1 to time t2 t1t212 base height dt t1t212 r r8 dt 12 ℓ t2 t1 displaystyle int t 1 t 2 frac 1 2 cdot base cdot height cdot dt int t 1 t 2 frac 1 2 cdot r cdot r dot theta cdot dt frac 1 2 cdot ell cdot t 2 t 1 depends only on the duration t2 t1 This is Kepler s second law karxnuphththkhxngkdekhphephlxrkhxthi 1 p ℓ2G 1M 1 displaystyle p ell 2 G 1 M 1 u pr 1 displaystyle u pr 1 and get GMr 2 ℓ2p 3u2 displaystyle GMr 2 ell 2 p 3 u 2 and 8 ℓr 2 ℓp 2u2 displaystyle dot theta ell r 2 ell p 2 u 2 X dXd8 8 dXd8 ℓp 2u2 displaystyle dot X frac dX d theta cdot dot theta frac dX d theta cdot ell p 2 u 2 Differentiate r pu 1 displaystyle r pu 1 twice r d pu 1 d8 ℓp 2u2 pu 2dud8 ℓp 2u2 ℓp 1dud8 displaystyle dot r frac d pu 1 d theta cdot ell p 2 u 2 pu 2 frac du d theta cdot ell p 2 u 2 ell p 1 frac du d theta r dr d8 ℓp 2u2 dd8 ℓp 1dud8 ℓp 2u2 ℓ2p 3u2d2ud82 displaystyle ddot r frac d dot r d theta cdot ell p 2 u 2 frac d d theta ell p 1 frac du d theta cdot ell p 2 u 2 ell 2 p 3 u 2 frac d 2 u d theta 2 Substitute into the radial equation of motion r r8 2 GMr 2 displaystyle ddot r r dot theta 2 GMr 2 and get ℓ2p 3u2d2ud82 pu 1 ℓp 2u2 2 ℓ2p 3u2 displaystyle ell 2 p 3 u 2 frac d 2 u d theta 2 pu 1 ell p 2 u 2 2 ell 2 p 3 u 2 Divide by ℓ2p 3u2 displaystyle ell 2 p 3 u 2 d2ud82 u 1 displaystyle frac d 2 u d theta 2 u 1 u 1 displaystyle u 1 d2ud82 u 0 displaystyle frac d 2 u d theta 2 u 0 These solutions are u ϵ cos 8 A displaystyle u epsilon cdot cos theta A where ϵ displaystyle epsilon and A displaystyle A are arbitrary constants of integration So the result is u 1 ϵ cos 8 A displaystyle u 1 epsilon cdot cos theta A Choosing the axis of the coordinate system such that A 0 displaystyle A 0 and inserting u pr 1 displaystyle u pr 1 gives pr 1 1 ϵ cos 8 displaystyle pr 1 1 epsilon cdot cos theta If ϵ lt 1 displaystyle epsilon lt 1 this is Kepler s first law kdekhphephlxrkhxthi 3 T2 4p2GM r3 displaystyle T 2 frac 4 pi 2 GM cdot r 3 where T planet s sidereal period r radius of the planet s circular orbit G the gravitational constant M mass of the sun T2 4p2G M m a3 displaystyle T 2 frac 4 pi 2 G M m cdot a 3 ody T object s sidereal period a object s semimajor axis G the gravitational constant 6 67 10 11 N m kg M mass of one object m mass of the other object 12 1 ϵ a VAdt 12 1 ϵ a VBdt displaystyle begin matrix frac 1 2 end matrix cdot 1 epsilon a cdot V A dt begin matrix frac 1 2 end matrix cdot 1 epsilon a cdot V B dt 1 ϵ VA 1 ϵ VB displaystyle 1 epsilon cdot V A 1 epsilon cdot V B VA VB 1 ϵ1 ϵ displaystyle V A V B cdot frac 1 epsilon 1 epsilon mVA22 GmM 1 ϵ a mVB22 GmM 1 ϵ a displaystyle frac mV A 2 2 frac GmM 1 epsilon a frac mV B 2 2 frac GmM 1 epsilon a VA22 VB22 GM 1 ϵ a GM 1 ϵ a displaystyle frac V A 2 2 frac V B 2 2 frac GM 1 epsilon a frac GM 1 epsilon a VA2 VB22 GMa 1 1 ϵ 1 1 ϵ displaystyle frac V A 2 V B 2 2 frac GM a cdot left frac 1 1 epsilon frac 1 1 epsilon right VB 1 ϵ1 ϵ 2 VB22 GMa 1 ϵ 1 ϵ 1 ϵ 1 ϵ displaystyle frac left V B cdot frac 1 epsilon 1 epsilon right 2 V B 2 2 frac GM a cdot left frac 1 epsilon 1 epsilon 1 epsilon 1 epsilon right VB2 1 ϵ1 ϵ 2 VB2 2GMa 2ϵ 1 ϵ 1 ϵ displaystyle V B 2 cdot left frac 1 epsilon 1 epsilon right 2 V B 2 frac 2GM a cdot left frac 2 epsilon 1 epsilon 1 epsilon right VB2 1 ϵ 2 1 ϵ 2 1 ϵ 2 4GMϵa 1 ϵ 1 ϵ displaystyle V B 2 cdot left frac 1 epsilon 2 1 epsilon 2 1 epsilon 2 right frac 4GM epsilon a cdot 1 epsilon 1 epsilon VB2 1 2ϵ ϵ2 1 2ϵ ϵ2 1 ϵ 2 4GMϵa 1 ϵ 1 ϵ displaystyle V B 2 cdot left frac 1 2 epsilon epsilon 2 1 2 epsilon epsilon 2 1 epsilon 2 right frac 4GM epsilon a cdot 1 epsilon 1 epsilon VB2 4ϵ 4GMϵ 1 ϵ 2a 1 ϵ 1 ϵ displaystyle V B 2 cdot 4 epsilon frac 4GM epsilon cdot 1 epsilon 2 a cdot 1 epsilon 1 epsilon VB GM 1 ϵ a 1 ϵ displaystyle V B sqrt frac GM cdot 1 epsilon a cdot 1 epsilon dAdt 12 1 ϵ a VBdtdt 12 1 ϵ a VB displaystyle frac dA dt frac frac 1 2 cdot 1 epsilon a cdot V B dt dt begin matrix frac 1 2 end matrix cdot 1 epsilon a cdot V B 12 1 ϵ a GM 1 ϵ a 1 ϵ 12 GMa 1 ϵ 1 ϵ displaystyle begin matrix frac 1 2 end matrix cdot 1 epsilon a cdot sqrt frac GM cdot 1 epsilon a cdot 1 epsilon begin matrix frac 1 2 end matrix cdot sqrt GMa cdot 1 epsilon 1 epsilon dd T dAdt pa 1 ϵ2 a displaystyle T cdot frac dA dt pi a sqrt 1 epsilon 2 a T 12 GMa 1 ϵ 1 ϵ p 1 ϵ2 a2 displaystyle T cdot begin matrix frac 1 2 end matrix cdot sqrt GMa cdot 1 epsilon 1 epsilon pi sqrt 1 epsilon 2 a 2 T 2p 1 ϵ2 a2GMa 1 ϵ 1 ϵ 2pa2GMa 2pGMa3 displaystyle T frac 2 pi sqrt 1 epsilon 2 a 2 sqrt GMa cdot 1 epsilon 1 epsilon frac 2 pi a 2 sqrt GMa frac 2 pi sqrt GM sqrt a 3 T2 4p2GMa3 displaystyle T 2 frac 4 pi 2 GM a 3 T2 4p2G M m a3 displaystyle T 2 frac 4 pi 2 G M m a 3 s t ph xangxingHyman Andrew A Simple Cartesian Treatment of Planetary Motion 2011 08 07 thi ewyaebkaemchchin European Journal of Physics Vol 14 pp 145 147 1993 Kepler s Second Law by Jeff Bryant with Oleksandr Pavlyk duephimkhwamonmthwngaehlngkhxmulxunCrowell Benjamin Conservation Laws http www lightandmatter com area1book2 html 2020 06 01 thi ewyaebkaemchchin an online book that gives a proof of the first law without the use of calculus see section 5 2 p 112 David McNamara and Gianfranco Vidali Kepler s Second Law JAVA Interactive Tutorial http www phy syr edu courses java mc html kepler html 2006 09 10 thi ewyaebkaemchchin an interactive JAVA applet that aids in the understanding of Kepler s Second Law University of Tennessee s Dept Physics amp Astronomy Astronomy 161 page on Johannes Kepler The Laws of Planetary Motion 1 Equant compared to Kepler interactive model 2 2008 12 26 thi ewyaebkaemchchin Kepler s Third Law interactive model 3 2008 12 26 thi ewyaebkaemchchin