บทความนี้ต้องการการจัดหน้า หรือ ให้ คุณสามารถปรับปรุงแก้ไขบทความนี้ได้ และนำป้ายออก พิจารณาใช้เพื่อชี้ชัดข้อบกพร่อง |
บทความนี้อาจต้องเขียนใหม่ทั้งหมดเพื่อให้เป็นไปตามของวิกิพีเดีย หรือกำลังดำเนินการอยู่ คุณช่วยเราได้ อาจมีข้อเสนอแนะ |
ปัญหาการปกคลุมเซต (อังกฤษ: set covering problem) เป็นปัญหาในทฤษฎีความซับซ้อน วิทยาการคอมพิวเตอร์ และคณิตศาสตร์เชิงการจัด และได้รับการพิสูจน์ว่าเป็นปัญหาเอ็นพีบริบูรณ์ในพ.ศ. 2515
ปัญหาการปกคลุมเซตหมายถึง แบบจำลองทางคณิตศาสตร์ ซึ่งใช้ในการแก้ปัญหาการตัดสินใจ โดยใช้เมตริกซ์ 0-1 ช่วยในการจำลองสถานการณ์ โดยมีวัตถุประสงค์ให้ตัวแทนที่เลือกมามีความครอบคลุมกลุ่มเป้าหมายทั้งหมด ซึ่งอาจมีตัวแทนได้มากกว่า 1 เช่น การตั้งศูนย์บริการใหม่ให้มีความครอบคลุมกลุ่มลูกค้า อย่างน้อย 1 แห่ง กำหนดให้หากศูนย์บริการ j สามารถให้บริการได้ถึงพื้นที่ i ให้มีค่าเท่ากับ 1, หากไม่ใช่ให้มีค่าเท่ากับ 0
ณกร อินทร์พยุง (2548) กล่าวไว้ว่า ในปัญหาการตัดสินใจที่มีเงื่อนไขแบบ Set Covering (SCP) เราพิจารณาว่าปัญหานั้นมีลักษณะเป็นเมตริกซ์ 0-1 ที่มีแถว i โดยที่ { i = 1,2,3…,m} และมีคอลัมน์ j โดยที่ { j = 1,2,3..,n} เรากำหนดให้ X เป็นตัวแปรในการตัดสินใจที่มีค่าแบบไบนารี Xj = 1 ถ้า คอลัมน์ j (ซึ่งมีค่าใช้จ่าย Cj ) ถูกเลือก Xj = 0 ในกรณีอื่น ๆ สมมติว่าเราต้องการแก้ปัญหาการตัดสินใจที่ต้องการคำตอบที่มีค่าน้อยที่สุด (Minimization problem) เราสามารถเขียนฟังก์ชันวัตถุประสงค์และเงื่อนไขให้อยู่ในรูปสมการทางคณิตศาสตร์ได้ดังนี้
ฟังก์ชันวัตถุประสงค์ (Objective function) : Min ∑ Cj Xj
ภายใต้เงื่อนไข (Constraints) : ∑ Aij Xj ≥ 1
Xj = {0, 1} ; j = 1,2,3…,n
โดยที่Aij คือ เมตริกซ์ 0,1 ขนาด i x j และ Cj คือ ค่าใช้จ่ายของคอลัมน์ j
อ้างอิง
- [https://web.archive.org/web/20090623074522/http://www.logistics-adviser.com/ เก็บถาวร 2009-06-23 ที่ เวย์แบ็กแมชชีน ที่มาแหล่งอ้างอิง ]
wikipedia, แบบไทย, วิกิพีเดีย, วิกิ หนังสือ, หนังสือ, ห้องสมุด, บทความ, อ่าน, ดาวน์โหลด, ฟรี, ดาวน์โหลดฟรี, mp3, วิดีโอ, mp4, 3gp, jpg, jpeg, gif, png, รูปภาพ, เพลง, เพลง, หนัง, หนังสือ, เกม, เกม, มือถือ, โทรศัพท์, Android, iOS, Apple, โทรศัพท์โมบิล, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, Sonya, MI, PC, พีซี, web, เว็บ, คอมพิวเตอร์
bthkhwamnitxngkarkarcdhna cdhmwdhmu islingkphayin hruxekbkwadenuxha ihmikhunphaphdikhun khunsamarthprbprungaekikhbthkhwamniid aelanapayxxk phicarnaichpaykhxkhwamxunephuxchichdkhxbkphrxngbthkhwamnixactxngekhiynihmthnghmdephuxihepniptammatrthankhunphaphkhxngwikiphiediy hruxkalngdaeninkarxyu khunchwyeraid hnaxphiprayxacmikhxesnxaena pyhakarpkkhlumest xngkvs set covering problem epnpyhainthvsdikhwamsbsxn withyakarkhxmphiwetxr aelakhnitsastrechingkarcd aelaidrbkarphisucnwaepnpyhaexnphibriburninph s 2515 pyhakarpkkhlumesthmaythung aebbcalxngthangkhnitsastr sungichinkaraekpyhakartdsinic odyichemtriks 0 1 chwyinkarcalxngsthankarn odymiwtthuprasngkhihtwaethnthieluxkmamikhwamkhrxbkhlumklumepahmaythnghmd sungxacmitwaethnidmakkwa 1 echn kartngsunybrikarihmihmikhwamkhrxbkhlumklumlukkha xyangnxy 1 aehng kahndihhaksunybrikar j samarthihbrikaridthungphunthi i ihmikhaethakb 1 hakimichihmikhaethakb 0 nkr xinthrphyung 2548 klawiwwa inpyhakartdsinicthimienguxnikhaebb Set Covering SCP eraphicarnawapyhannmilksnaepnemtriks 0 1 thimiaethw i odythi i 1 2 3 m aelamikhxlmn j odythi j 1 2 3 n erakahndih X epntwaeprinkartdsinicthimikhaaebbibnari Xj 1 tha khxlmn j sungmikhaichcay Cj thukeluxk Xj 0 inkrnixun smmtiwaeratxngkaraekpyhakartdsinicthitxngkarkhatxbthimikhanxythisud Minimization problem erasamarthekhiynfngkchnwtthuprasngkhaelaenguxnikhihxyuinrupsmkarthangkhnitsastriddngni fngkchnwtthuprasngkh Objective function Min Cj Xj phayitenguxnikh Constraints Aij Xj 1 Xj 0 1 j 1 2 3 n odythiAij khux emtriks 0 1 khnad i x j aela Cj khux khaichcaykhxngkhxlmn jxangxing https web archive org web 20090623074522 http www logistics adviser com ekbthawr 2009 06 23 thi ewyaebkaemchchin thimaaehlngxangxing