จำนวนเฉพาะแมร์แซน (อังกฤษ: Mersenne prime) เป็นตัวเลขจำนวนเฉพาะที่อยู่ในรูปของ
จำนวนเฉพาะแมร์แซน ได้มาจากชื่อนักคณิตศาสตร์ชาวฝรั่งเศส (Marin Mersenne) มีชีวิตอยู่สมัยศตวรรษที่ 17 ได้รับการยกย่องว่าเป็นผู้คิดวิธีที่ง่ายที่สุดในการทดสอบเลขจำนวนเฉพาะ โดยได้ทำการศึกษาเลขจำนวนเฉพาะในรูปแบบ 2p - 1 ซึ่งพบว่า 2p - 1 ไม่เป็นจำนวนเฉพาะทุกตัว
จำนวนเฉพาะที่มากที่สุดเท่าที่มีการค้นพบ 274,207,281 − 1 เป็นจำนวนเฉพาะแมร์แซน ในลำดับที่ 49
จำนวนเฉพาะที่มีขนาดใหญ่มาก (ใหญ่กว่า 10100) นำไปใช้ประโยชน์ในขั้นตอนวิธีเข้ารหัสลับแบบกุญแจสาธารณะ นอกจากนี้ยังใช้ในตารางแฮช (hash tables) และ
ตารางจำนวนเฉพาะ
# | p | Mp | Mp จำนวนหลักใน Mp | เวลาที่ค้นพบ (ค.ศ.) | ผู้ค้นพบ | วิธี |
---|---|---|---|---|---|---|
1 | 2 | 1 | c. 430 BC | |||
2 | 3 | 1 | c. 430 BC | นักคณิตศาสตร์กรีกโบราณ | ||
3 | 5 | 2 | c. 300 BC | นักคณิตศาสตร์กรีกโบราณ | ||
4 | 7 | 3 | c. 300 BC | นักคณิตศาสตร์กรีกโบราณ | ||
5 | 13 | 4 | 1456 | คนทั่วไป | การหารเชิงทดลอง | |
6 | 17 | 6 | 1588 | การหารเชิงทดลอง | ||
7 | 19 | 6 | 1588 | Pietro Cataldi | การหารเชิงทดลอง | |
8 | 31 | 10 | 1772 | Leonhard Euler | Enhanced trial division | |
9 | 61 | 2305843009213693951 | 19 | 1883 November | ||
10 | 89 | 618970019642...137449562111 | 27 | 1911 June | Lucas sequences | |
11 | 107 | 162259276829...578010288127 | 33 | 1914 June 1 | Ralph Ernest Powers | Lucas sequences |
12 | 127 | 170141183460...715884105727 | 39 | 1876 January 10 | Lucas sequences | |
13 | 521 | 686479766013...291115057151 | 157 | 1952 January 30 | / | |
14 | 607 | 531137992816...219031728127 | 183 | 1952 January 30 | Raphael M. Robinson | LLT / SWAC |
15 | 1,279 | 104079321946...703168729087 | 386 | 1952 June 25 | Raphael M. Robinson | LLT / SWAC |
16 | 2,203 | 147597991521...686697771007 | 664 | 1952 October 7 | Raphael M. Robinson | LLT / SWAC |
17 | 2,281 | 446087557183...418132836351 | 687 | 1952 October 9 | Raphael M. Robinson | LLT / SWAC |
18 | 3,217 | 259117086013...362909315071 | 969 | 1957 September 8 | LLT / | |
19 | 4,253 | 190797007524...815350484991 | 1,281 | 1961 November 3 | Alexander Hurwitz | LLT / |
20 | 4,423 | 285542542228...902608580607 | 1,332 | 1961 November 3 | Alexander Hurwitz | LLT / IBM 7090 |
21 | 9,689 | 478220278805...826225754111 | 2,917 | 1963 May 11 | LLT / | |
22 | 9,941 | 346088282490...883789463551 | 2,993 | 1963 May 16 | Donald B. Gillies | LLT / ILLIAC II |
23 | 11,213 | 281411201369...087696392191 | 3,376 | 1963 June 2 | Donald B. Gillies | LLT / ILLIAC II |
24 | 19,937 | 431542479738...030968041471 | 6,002 | 1971 March 4 | LLT / /91 | |
25 | 21,701 | 448679166119...353511882751 | 6,533 | 1978 October 30 | & Laura Nickel | LLT / 174 |
26 | 23,209 | 402874115778...523779264511 | 6,987 | 1979 February 9 | Landon Curt Noll | LLT / CDC Cyber 174 |
27 | 44,497 | 854509824303...961011228671 | 13,395 | 1979 April 8 | & | LLT / |
28 | 86,243 | 536927995502...709433438207 | 25,962 | 1982 September 25 | David Slowinski | LLT / Cray 1 |
29 | 110,503 | 521928313341...083465515007 | 33,265 | 1988 January 29 | Walter Colquitt & Luke Welsh | LLT / |
30 | 132,049 | 512740276269...455730061311 | 39,751 | 1983 September 19 | David Slowinski | LLT / |
31 | 216,091 | 746093103064...103815528447 | 65,050 | 1985 September 1 | David Slowinski | LLT / Cray X-MP/24 |
32 | 756,839 | 174135906820...328544677887 | 227,832 | 1992 February 17 | David Slowinski & | LLT / 's |
33 | 859,433 | 129498125604...243500142591 | 258,716 | 1994 January 4 | David Slowinski & Paul Gage | LLT / |
34 | 1,257,787 | 412245773621...976089366527 | 378,632 | 1996 September 3 | David Slowinski & Paul Gage | LLT / |
35 | 1,398,269 | 814717564412...868451315711 | 420,921 | 1996 November 13 | / Joel Armengaud | LLT / on 90 MHz Pentium |
36 | 2,976,221 | 623340076248...743729201151 | 895,932 | 1997 August 24 | GIMPS / Gordon Spence | LLT / Prime95 on 100 MHz Pentium |
37 | 3,021,377 | 127411683030...973024694271 | 909,526 | 1998 January 27 | GIMPS / Roland Clarkson | LLT / Prime95 on 200 MHz Pentium |
38 | 6,972,593 | 437075744127...142924193791 | 2,098,960 | 1999 June 1 | GIMPS / Nayan Hajratwala | LLT / Prime95 on 350 MHz |
39 | 13,466,917 | 924947738006...470256259071 | 4,053,946 | 2001 November 14 | GIMPS / Michael Cameron | LLT / Prime95 on 800 MHz |
40 | 20,996,011 | 125976895450...762855682047 | 6,320,430 | 2003 November 17 | GIMPS / Michael Shafer | LLT / Prime95 on 2 GHz |
41 | 24,036,583 | 299410429404...882733969407 | 7,235,733 | 2004 May 15 | GIMPS / Josh Findley | LLT / Prime95 on 2.4 GHz |
42 | 25,964,951 | 122164630061...280577077247 | 7,816,230 | 2005 February 18 | GIMPS / Martin Nowak | LLT / Prime95 on 2.4 GHz Pentium 4 |
43 | 30,402,457 | 315416475618...411652943871 | 9,152,052 | 2005 December 15 | GIMPS / & Steven Boone | LLT / Prime95 on 2 GHz Pentium 4 |
44 | 32,582,657 | 124575026015...154053967871 | 9,808,358 | 2006 September 4 | GIMPS / Curtis Cooper & Steven Boone | LLT / Prime95 on 3 GHz Pentium 4 |
45 | 37,156,667 | 202254406890...022308220927 | 11,185,272 | 2008 September 6 | GIMPS / Hans-Michael Elvenich | LLT / Prime95 on 2.83 GHz |
46 | 42,643,801 | 169873516452...765562314751 | 12,837,064 | 2009 April 12 | GIMPS / Odd M. Strindmo | LLT / Prime95 on 3 GHz Core 2 |
47 | 43,112,609 | 316470269330...166697152511 | 12,978,189 | 2008 August 23 | GIMPS / Edson Smith | LLT / Prime95 on 745 |
48 | 57,885,161 | 581887266232...071724285951 | 17,425,170 | 2013 January 25 | GIMPS / Curtis Cooper | LLT / Prime95 on 3 GHz Intel Core2 Duo E8400 |
49 | 74,207,281 | 300376418084...391086436351 | 22,338,618 | 2015 September 17 | GIMPS / Curtis Cooper | LLT / Prime95 on Intel |
เชิงอรรถ
หมายเหตุ
- It is not verified whether any undiscovered Mersenne primes exist between the 45th (M37,156,667) and the 49th (M74,207,281) on this chart; the ranking is therefore provisional.
- M42,643,801 was first found by a machine on April 12, 2009; however, no human took notice of this fact until June 4. Thus, either April 12 or June 4 may be considered the 'discovery' date.
- Strindmo also uses the alias Stig M. Valstad.
- M74,207,281 was first found by a machine on September 17, 2015; however, no human took notice of this fact until January 7, 2016. Thus, either date may be considered the 'discovery' date. GIMPS considers the January 2016 date to be the official one.
อ้างอิง
- Cooper, Curtis (7 January 2016). "Mersenne Prime Number discovery – 274207281 − 1 is Prime!". Mersenne Research, Inc. สืบค้นเมื่อ 22 January 2016.
- Brook, Robert (January 19, 2016). "Prime number with 22 million digits is the biggest ever found". . สืบค้นเมื่อ 19 January 2016.
- Chang, Kenneth (21 January 2016). "New Biggest Prime Number = 2 to the 74 Mil ... Uh, It's Big". New York Times. สืบค้นเมื่อ 22 January 2016.
- There is no mentioning among the ancient Egyptians of prime numbers, and they did not have any concept for prime numbers known today. In the (1650 BC) the Egyptian fraction expansions have fairly different forms for primes and composites, so it may be argued that they knew about prime numbers. "The Egyptians used ($) in the table above for the first primes r = 3, 5, 7, or 11 (also for r = 23). Here is another intriguing observation: That the Egyptians stopped the use of ($) at 11 suggests they understood (at least some parts of) Eratosthenes's Sieve 2000 years before Eratosthenes 'discovered' it." The Rhind 2/n Table [Retrieved 2012-11-11]. In the school of Pythagoras (b. about 570 – d. about 495 BC) and the , we find the first sure observations of prime numbers. Hence the first two Mersenne primes, 3 and 7, were known to and may even be said to have been discovered by them. There is no reference, though, to their special form 22 − 1 and 23 − 1 as such. The sources to the knowledge of prime numbers among the Pythagoreans are late. The Neoplatonic philosopher , AD c. 245–c. 325, states that the Greek Platonic philosopher , c. 408 – 339/8 BC, wrote a book named On Pythagorean Numbers. According to Iamblichus this book was based on the works of the Pythagorean , c. 470–c. 385 BC, who lived a century after Pythagoras, 570 – c. 495 BC. In his Theology of Arithmetic in the chapter On the Decad, Iamblichus writes: "Speusippus, the son of Plato's sister Potone, and head of the Academy before Xenocrates, compiled a polished little book from the Pythagorean writings which were particularly valued at any time, and especially from the writings of Philolaus; he entitled the book On Pythagorean Numbers. In the first half of the book, he elegantly expounds linear numbers [i.e. prime numbers], polygonal numbers and all sorts of plane numbers, solid numbers and the five figures which are assigned to the elements of the universe, discussing both their individual attributes and their shared features, and their proportionality and reciprocity." Iamblichus The Theology of Arithmetic translated by Robin Waterfiled, 1988, p. 112f. [Retrieved 2012-11-11]. also gives us a direct quote from ' book where among other things writes: "Secondly, it is necessary for a perfect number [the concept "perfect number" is not used here in a modern sense] to contain an equal amount of prime and incomposite numbers, and secondary and composite numbers." Iamblichus The Theology of Arithmetic translated by Robin Waterfiled, 1988, p. 113. [Retrieved 2012-11-11]. For the Greek original text, see Speusippus of Athens: A Critical Study with a Collection of the Related Texts and Commentary by Leonardo Tarán, 1981, p. 140 line 21–22 [Retrieved 2012-11-11] In his comments to 's , also mentions that , ca. 400 BC – ca. 350 BC, uses the term rectilinear for prime numbers, and that , fl. AD 100, uses euthymetric and linear as alternative terms. Nicomachus of Gerasa, Introduction to Arithmetic, 1926, p. 127 [Retrieved 2012-11-11] It is unclear though when this said Thymaridas lived. "In a highly suspect passage in Iamblichus, Thymaridas is listed as a pupil of Pythagoras himself." Pythagoreanism [Retrieved 2012-11-11] Before , c. 470–c. 385 BC, we have no proof of any knowledge of prime numbers.
- "Euclid's Elements, Book IX, Proposition 36".
- The Prime Pages, Mersenne Primes: History, Theorems and Lists.
- We find the oldest (undisputed) note of the result in Codex nr. 14908, which origins from Bibliotheca monasterii ord. S. Benedicti ad S. Emmeramum Ratisbonensis now in the archive of the Bayerische Staatsbibliothek, see "Halm, Karl / Laubmann, Georg von / Meyer, Wilhelm: Catalogus codicum latinorum Bibliothecae Regiae Monacensis, Bd.: 2,2, Monachii, 1876, p. 250". [retrieved on 2012-09-17] The Codex nr. 14908 consists of 10 different medieval works on mathematics and related subjects. The authors of most of these writings are known. Some authors consider the monk Fridericus Gerhart (Amman), 1400–1465 (Frater Fridericus Gerhart monachus ordinis sancti Benedicti astrologus professus in monasterio sancti Emmerani diocesis Ratisponensis et in ciuitate eiusdem) to be the author of the part where the prime number 8191 is mentioned. Geschichte Der Mathematik [retrieved on 2012-09-17] The second manuscript of Codex nr. 14908 has the name "Regulae et exempla arithmetica, algebraica, geometrica" and the 5th perfect number and all is factors, including 8191, are mentioned on folio no. 34 a tergo (backside of p. 34). Parts of the manuscript have been published in Archiv der Mathematik und Physik, 13 (1895), pp. 388–406 [retrieved on 2012-09-23]
- "A i lettori. Nel trattato de' numeri perfetti, che giàfino dell anno 1588 composi, oltrache se era passato auáti à trouarne molti auertite molte cose, se era anco amplamente dilatatala Tauola de' numeri composti , di ciascuno de' quali si vedeano per ordine li componenti, onde preposto unnum." p. 1 in Trattato de' nvumeri perfetti Di Pietro Antonio Cataldo 1603. http://fermi.imss.fi.it/rd/bdv?/bdviewer@selid=1373775#[]
- pp. 13–18 in Trattato de' nvumeri perfetti Di Pietro Antonio Cataldo 1603. http://fermi.imss.fi.it/rd/bdv?/bdviewer@selid=1373775#[]
- pp. 18–22 in Trattato de' nvumeri perfetti Di Pietro Antonio Cataldo 1603. http://fermi.imss.fi.it/rd/bdv?/bdviewer@selid=1373775#[]
- http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=03-nouv/1772&seite:int=36 2012-03-31 ที่ เวย์แบ็กแมชชีน Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres 1772, pp. 35–36 EULER, Leonhard: Extrait d'une lettre à M. Bernoulli, concernant le Mémoire imprimé parmi ceux de 1771. p. 318 [intitulé: Recherches sur les diviseurs de quelques nombres très grands compris dans la somme de la progression géométrique 1 + 101 + 102 + 103 + ... + 10T = S]. Retrieved 2011-10-02.
- http://primes.utm.edu/notes/by_year.html#31 The date and year of discovery is unsure. Dates between 1752 and 1772 are possible.
- Chris K. Caldwell. "Modular restrictions on Mersenne divisors". Primes.utm.edu. สืบค้นเมื่อ 2011-05-21.
- “En novembre de l’année 1883, dans la correspondance de notre Académie se trouve une communication qui contient l’assertion que le nombre 261 − 1 = 2305843009213693951 est un nombre premier. /…/ Le tome XLVIII des Mémoires Russes de l’Académie /…/ contient le compte-rendu de la séance du 20 décembre 1883, dans lequel l’objet de la communication du père Pervouchine est indiqué avec précision.” Bulletin de l'Académie Impériale des Sciences de St.-Pétersbourg, s. 3, v. 31, 1887, cols. 532–533. http://www.biodiversitylibrary.org/item/107789#page/277/mode/1up [retrieved 2012-09-17] See also Mélanges mathématiques et astronomiques tirés du Bulletin de l’Académie impériale des sciences de St.-Pétersbourg v. 6 (1881–1888), pp. 553–554. See also Mémoires de l'Académie impériale des sciences de St.-Pétersbourg: Sciences mathématiques, physiques et naturelles, vol. 48
- Powers, R. E. (1 January 1911). "The Tenth Perfect Number". The American Mathematical Monthly. 18 (11): 195–197. doi:10.2307/2972574. JSTOR 2972574.
- "M. E. Fauquenbergue a trouvé ses résultats depuis Février, et j’en ai reçu communication le 7 Juin; M. Powers a envoyé le 1er Juin un cablógramme à [secretary of London Mathematical Society] pour M107. Sur ma demande, ces deux auteurs m’ont adressé leurs remarquables résultats, et je m’empresse de les publier dans nos colonnes, avec nos felicitations." p. 103, André Gérardin, Nombres de Mersenne pp. 85, 103–108 in Sphinx-Œdipe. [Journal mensuel de la curiosité, de concours & de mathématiques.] v. 9, No. 1, 1914.
- "Power's cable announcing this same result was sent to the London Math. So. on 1 June 1914." Mersenne's Numbers, Scripta Mathematica, v. 3, 1935, pp. 112–119 http://primes.utm.edu/mersenne/LukeMirror/lit/lit_008s.htm [retrieved 2012-10-13]
- http://plms.oxfordjournals.org/content/s2-13/1/1.1.full.pdf Proceedings / London Mathematical Society (1914) s2–13 (1): 1. Result presented at a meeting with London Mathematical Society on June 11, 1914. Retrieved 2011-10-02.
- The Prime Pages, M107: Fauquembergue or Powers?.
- http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-3039&I=166&M=chemindefer Presented at a meeting with Académie des sciences (France) on January 10, 1876. Retrieved 2011-10-02.
- "Using the standard Lucas test for Mersenne primes as programmed by R. M. Robinson, the SWAC has discovered the primes 2521 − 1 and 2607 − 1 on January 30, 1952." D. H. Lehmer, Recent Discoveries of Large Primes, Mathematics of Computation, vol. 6, No. 37 (1952), p. 61, http://www.ams.org/journals/mcom/1952-06-037/S0025-5718-52-99404-0/S0025-5718-52-99404-0.pdf [Retrieved 2012-09-18]
- "The program described in Note 131 (c) has produced the 15th Mersenne prime 21279 − 1 on June 25. The SWAC tests this number in 13 minutes and 25 seconds." D. H. Lehmer, A New Mersenne Prime, Mathematics of Computation, vol. 6, No. 39 (1952), p. 205, http://www.ams.org/journals/mcom/1952-06-039/S0025-5718-52-99387-3/S0025-5718-52-99387-3.pdf [Retrieved 2012-09-18]
- "Two more Mersenne primes, 22203 − 1 and 22281 − 1, were discovered by the SWAC on October 7 and 9, 1952." D. H. Lehmer, Two New Mersenne Primes, Mathematics of Computation, vol. 7, No. 41 (1952), p. 72, http://www.ams.org/journals/mcom/1953-07-041/S0025-5718-53-99371-5/S0025-5718-53-99371-5.pdf [Retrieved 2012-09-18]
- "On September 8, 1957, the Swedish electronic computer BESK established that the Mersenne number M3217 = 23217 − 1 is a prime." Hans Riesel, A New Mersenne Prime, Mathematics of Computation, vol. 12 (1958), p. 60, http://www.ams.org/journals/mcom/1958-12-061/S0025-5718-1958-0099752-6/S0025-5718-1958-0099752-6.pdf [Retrieved 2012-09-18]
- A. Hurwitz and J. L. Selfridge, Fermat numbers and perfect numbers, Notices of the American Mathematical Society, v. 8, 1961, p. 601, abstract 587-104.
- "If p is prime, Mp = 2p − 1 is called a Mersenne number. The primes M4253 and M4423 were discovered by coding the Lucas-Lehmer test for the IBM 7090." Alexander Hurwitz, New Mersenne Primes, Mathematics of Computation, vol. 16, No. 78 (1962), pp. 249–251, http://www.ams.org/journals/mcom/1962-16-078/S0025-5718-1962-0146162-X/S0025-5718-1962-0146162-X.pdf [Retrieved 2012-09-18]
- "The primes M9689, M9941, and M11213 which are now the largest known primes, were discovered by Illiac II at the Digital Computer Laboratory of the University of Illinois." Donald B. Gillies, Three New Mersenne Primes and a Statistical Theory, Mathematics of Computation, vol. 18, No. 85 (1964), pp. 93–97, http://www.ams.org/journals/mcom/1964-18-085/S0025-5718-1964-0159774-6/S0025-5718-1964-0159774-6.pdf [Retrieved 2012-09-18]
- "On the evening of March 4, 1971, a zero Lucas-Lehmer residue for p = p24 = 19937 was found. Hence, M19937 is the 24th Mersenne prime." Bryant Tuckerman, The 24th Mersenne Prime, Proceedings of the National Academy of Sciences of the United States of America, vol. 68:10 (1971), pp. 2319–2320, http://www.pnas.org/content/68/10/2319.full.pdf [Retrieved 2012-09-18]
- "On October 30, 1978 at 9:40 pm, we found M21701 to be prime. The CPU time required for this test was 7:40:20. Tuckerman and Lehmer later provided confirmation of this result." Curt Noll and Laura Nickel, The 25th and 26th Mersenne Primes, Mathematics of Computation, vol. 35, No. 152 (1980), pp. 1387–1390, http://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583517-4/S0025-5718-1980-0583517-4.pdf [Retrieved 2012-09-18]
- "Of the 125 remaining Mp only M23209 was found to be prime. The test was completed on February 9, 1979 at 4:06 after 8:39:37 of CPU time. Lehmer and McGrogan later confirmed the result." Curt Noll and Laura Nickel, The 25th and 26th Mersenne Primes, Mathematics of Computation, vol. 35, No. 152 (1980), pp. 1387–1390, http://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583517-4/S0025-5718-1980-0583517-4.pdf [Retrieved 2012-09-18]
- David Slowinski, "Searching for the 27th Mersenne Prime", Journal of Recreational Mathematics, v. 11(4), 1978–79, pp. 258–261, MR 80g #10013
- "The 27th Mersenne prime. It has 13395 digits and equals 244497 – 1. [...] Its primeness was determined on April 8, 1979 using the Lucas–Lehmer test. The test was programmed on a CRAY-1 computer by David Slowinski & Harry Nelson." (p. 15) "The result was that after applying the Lucas–Lehmer test to about a thousand numbers, the code determined, on Sunday, April 8th, that 244497 − 1 is, in fact, the 27th Mersenne prime." (p. 17), David Slowinski, "Searching for the 27th Mersenne Prime", Cray Channels, vol. 4, no. 1, (1982), pp. 15–17.
- "An FFT containing 8192 complex elements, which was the minimum size required to test M110503, ran approximately 11 minutes on the SX-2. The discovery of M110503 (January 29, 1988) has been confirmed." W. N. Colquitt and L. Welsh, Jr., A New Mersenne Prime, Mathematics of Computation, vol. 56, No. 194 (April 1991), pp. 867–870, http://www.ams.org/journals/mcom/1991-56-194/S0025-5718-1991-1068823-9/S0025-5718-1991-1068823-9.pdf [Retrieved 2012-09-18]
- "This week, two computer experts found the 31st Mersenne prime. But to their surprise, the newly discovered prime number falls between two previously known Mersenne primes. It occurs when p = 110,503, making it the third-largest Mersenne prime known." I. Peterson, Priming for a lucky strike Science News; 2/6/88, Vol. 133 Issue 6, pp. 85–85. http://ehis.ebscohost.com/ehost/detail?vid=3&hid=23&sid=9a9d7493-ffed-410b-9b59-b86c63a93bc4%40sessionmgr10&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=afh&AN=8824187 [Retrieved 2012-09-18]
- "Mersenne Prime Numbers". Omes.uni-bielefeld.de. 2011-01-05. สืบค้นเมื่อ 2011-05-21.
- "Slowinski, a software engineer for Cray Research Inc. in Chippewa Falls, discovered the number at 11:36 a.m. Monday. [i.e. 1983 September 19]" Jim Higgins, "Elusive numeral's number is up" and "Scientist finds big number" in The Milwaukee Sentinel – Sep 24, 1983, p. 1, p. 11 [retrieved 2012-10-23]
- "The number is the 30th known example of a Mersenne prime, a number divisible only by 1 and itself and written in the form 2p − 1, where the exponent p is also a prime number. For instance, 127 is a Mersenne number for which the exponent is 7. The record prime number's exponent is 216,091." I. Peterson, Prime time for supercomputers Science News; 9/28/85, Vol. 128 Issue 13, p. 199. http://ehis.ebscohost.com/ehost/detail?vid=4&hid=22&sid=c11090a2-4670-469f-8f75-947b593a56a0%40sessionmgr10&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=afh&AN=8840537 [Retrieved 2012-09-18]
- "Slowinski's program also found the 28th in 1982, the 29th in 1983, and the 30th [known at that time] this past Labor Day weekend. [i.e. August 31-September 1, 1985]" Rad Sallee, "`Supercomputer'/Chevron calculating device finds a bigger prime number" Houston Chronicle, Friday 09/20/1985, Section 1, Page 26, 4 Star Edition [retrieved 2012-10-23]
- The Prime Pages, The finding of the 32nd Mersenne.
- Chris Caldwell, The Largest Known Primes 1998-12-02 ที่ เวย์แบ็กแมชชีน.
- Crays press release
- "Slowinskis email".
- Silicon Graphics' press release [Retrieved 2012-09-20]
- The Prime Pages, A Prime of Record Size! 21257787 – 1.
- GIMPS Discovers 35th Mersenne Prime.
- GIMPS Discovers 36th Known Mersenne Prime.
- GIMPS Discovers 37th Known Mersenne Prime.
- GIMPS Finds First Million-Digit Prime, Stakes Claim to $50,000 EFF Award.
- GIMPS, Researchers Discover Largest Multi-Million-Digit Prime Using Entropia Distributed Computing Grid.
- GIMPS, Mersenne Project Discovers Largest Known Prime Number on World-Wide Volunteer Computer Grid.
- GIMPS, Mersenne.org Project Discovers New Largest Known Prime Number, 224,036,583 – 1.
- GIMPS, Mersenne.org Project Discovers New Largest Known Prime Number, 225,964,951 – 1.
- GIMPS, Mersenne.org Project Discovers New Largest Known Prime Number, 230,402,457 – 1.
- GIMPS, Mersenne.org Project Discovers Largest Known Prime Number, 232,582,657 – 1.
- Titanic Primes Raced to Win $100,000 Research Award. Retrieved on 2008-09-16.
- "On April 12th [2009], the 47th known Mersenne prime, 242,643,801 – 1, a 12,837,064 digit number was found by Odd Magnar Strindmo from Melhus, Norway! This prime is the second largest known prime number, a "mere" 141,125 digits smaller than the Mersenne prime found last August.", The List of Largest Known Primes Home Page, http://primes.utm.edu/primes/page.php?id=88847 [retrieved 2012-09-18]
- "GIMPS Discovers 48th Mersenne Prime, 257,885,161 − 1 is now the Largest Known Prime". . สืบค้นเมื่อ 2016-01-19.
- "List of known Mersenne prime numbers". สืบค้นเมื่อ 29 November 2014.
- ม.มิสซูรีพบจำนวนเฉพาะขนาดใหญ่ที่สุด 9.1 ล้านหลัก 2007-06-30 ที่ เวย์แบ็กแมชชีน โดย ผู้จัดการออนไลน์ 5 มกราคม 2549 06:55 น.
wikipedia, แบบไทย, วิกิพีเดีย, วิกิ หนังสือ, หนังสือ, ห้องสมุด, บทความ, อ่าน, ดาวน์โหลด, ฟรี, ดาวน์โหลดฟรี, mp3, วิดีโอ, mp4, 3gp, jpg, jpeg, gif, png, รูปภาพ, เพลง, เพลง, หนัง, หนังสือ, เกม, เกม, มือถือ, โทรศัพท์, Android, iOS, Apple, โทรศัพท์โมบิล, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, Sonya, MI, PC, พีซี, web, เว็บ, คอมพิวเตอร์
canwnechphaaaemraesn xngkvs Mersenne prime epntwelkhcanwnechphaathixyuinrupkhxng Mp 2p 1 displaystyle M p 2 p 1 dd canwnechphaaaemraesn idmacakchuxnkkhnitsastrchawfrngess Marin Mersenne michiwitxyusmystwrrsthi 17 idrbkarykyxngwaepnphukhidwithithingaythisudinkarthdsxbelkhcanwnechphaa odyidthakarsuksaelkhcanwnechphaainrupaebb 2p 1 sungphbwa 2p 1 imepncanwnechphaathuktw canwnechphaathimakthisudethathimikarkhnphb 274 207 281 1 epncanwnechphaaaemraesn inladbthi 49 canwnechphaathimikhnadihymak ihykwa 10100 naipichpraoychninkhntxnwithiekharhslbaebbkuyaecsatharna nxkcakniyngichintarangaehch hash tables aelatarangcanwnechphaa p Mp Mp canwnhlkin Mp ewlathikhnphb kh s phukhnphb withi1 2 1 c 430 BC2 3 1 c 430 BC nkkhnitsastrkrikobran3 5 2 c 300 BC nkkhnitsastrkrikobran4 7 3 c 300 BC nkkhnitsastrkrikobran5 13 4 1456 khnthwip karharechingthdlxng6 17 6 1588 karharechingthdlxng7 19 6 1588 Pietro Cataldi karharechingthdlxng8 31 10 1772 Leonhard Euler Enhanced trial division9 61 2305843009213693951 19 1883 November10 89 618970019642 137449562111 27 1911 June Lucas sequences11 107 162259276829 578010288127 33 1914 June 1 Ralph Ernest Powers Lucas sequences12 127 170141183460 715884105727 39 1876 January 10 Lucas sequences13 521 686479766013 291115057151 157 1952 January 30 14 607 531137992816 219031728127 183 1952 January 30 Raphael M Robinson LLT SWAC15 1 279 104079321946 703168729087 386 1952 June 25 Raphael M Robinson LLT SWAC16 2 203 147597991521 686697771007 664 1952 October 7 Raphael M Robinson LLT SWAC17 2 281 446087557183 418132836351 687 1952 October 9 Raphael M Robinson LLT SWAC18 3 217 259117086013 362909315071 969 1957 September 8 LLT 19 4 253 190797007524 815350484991 1 281 1961 November 3 Alexander Hurwitz LLT 20 4 423 285542542228 902608580607 1 332 1961 November 3 Alexander Hurwitz LLT IBM 709021 9 689 478220278805 826225754111 2 917 1963 May 11 LLT 22 9 941 346088282490 883789463551 2 993 1963 May 16 Donald B Gillies LLT ILLIAC II23 11 213 281411201369 087696392191 3 376 1963 June 2 Donald B Gillies LLT ILLIAC II24 19 937 431542479738 030968041471 6 002 1971 March 4 LLT 9125 21 701 448679166119 353511882751 6 533 1978 October 30 amp Laura Nickel LLT 17426 23 209 402874115778 523779264511 6 987 1979 February 9 Landon Curt Noll LLT CDC Cyber 17427 44 497 854509824303 961011228671 13 395 1979 April 8 amp LLT 28 86 243 536927995502 709433438207 25 962 1982 September 25 David Slowinski LLT Cray 129 110 503 521928313341 083465515007 33 265 1988 January 29 Walter Colquitt amp Luke Welsh LLT 30 132 049 512740276269 455730061311 39 751 1983 September 19 David Slowinski LLT 31 216 091 746093103064 103815528447 65 050 1985 September 1 David Slowinski LLT Cray X MP 2432 756 839 174135906820 328544677887 227 832 1992 February 17 David Slowinski amp LLT s33 859 433 129498125604 243500142591 258 716 1994 January 4 David Slowinski amp Paul Gage LLT 34 1 257 787 412245773621 976089366527 378 632 1996 September 3 David Slowinski amp Paul Gage LLT 35 1 398 269 814717564412 868451315711 420 921 1996 November 13 Joel Armengaud LLT on 90 MHz Pentium36 2 976 221 623340076248 743729201151 895 932 1997 August 24 GIMPS Gordon Spence LLT Prime95 on 100 MHz Pentium37 3 021 377 127411683030 973024694271 909 526 1998 January 27 GIMPS Roland Clarkson LLT Prime95 on 200 MHz Pentium38 6 972 593 437075744127 142924193791 2 098 960 1999 June 1 GIMPS Nayan Hajratwala LLT Prime95 on 350 MHz39 13 466 917 924947738006 470256259071 4 053 946 2001 November 14 GIMPS Michael Cameron LLT Prime95 on 800 MHz40 20 996 011 125976895450 762855682047 6 320 430 2003 November 17 GIMPS Michael Shafer LLT Prime95 on 2 GHz41 24 036 583 299410429404 882733969407 7 235 733 2004 May 15 GIMPS Josh Findley LLT Prime95 on 2 4 GHz42 25 964 951 122164630061 280577077247 7 816 230 2005 February 18 GIMPS Martin Nowak LLT Prime95 on 2 4 GHz Pentium 443 30 402 457 315416475618 411652943871 9 152 052 2005 December 15 GIMPS amp Steven Boone LLT Prime95 on 2 GHz Pentium 444 32 582 657 124575026015 154053967871 9 808 358 2006 September 4 GIMPS Curtis Cooper amp Steven Boone LLT Prime95 on 3 GHz Pentium 445 37 156 667 202254406890 022308220927 11 185 272 2008 September 6 GIMPS Hans Michael Elvenich LLT Prime95 on 2 83 GHz46 42 643 801 169873516452 765562314751 12 837 064 2009 April 12 GIMPS Odd M Strindmo LLT Prime95 on 3 GHz Core 247 43 112 609 316470269330 166697152511 12 978 189 2008 August 23 GIMPS Edson Smith LLT Prime95 on 74548 57 885 161 581887266232 071724285951 17 425 170 2013 January 25 GIMPS Curtis Cooper LLT Prime95 on 3 GHz Intel Core2 Duo E840049 74 207 281 300376418084 391086436351 22 338 618 2015 September 17 GIMPS Curtis Cooper LLT Prime95 on Intelechingxrrthhmayehtu It is not verified whether any undiscovered Mersenne primes exist between the 45th M37 156 667 and the 49th M74 207 281 on this chart the ranking is therefore provisional M42 643 801 was first found by a machine on April 12 2009 however no human took notice of this fact until June 4 Thus either April 12 or June 4 may be considered the discovery date Strindmo also uses the alias Stig M Valstad M74 207 281 was first found by a machine on September 17 2015 however no human took notice of this fact until January 7 2016 Thus either date may be considered the discovery date GIMPS considers the January 2016 date to be the official one xangxing Cooper Curtis 7 January 2016 Mersenne Prime Number discovery 274207281 1 is Prime Mersenne Research Inc subkhnemux 22 January 2016 Brook Robert January 19 2016 Prime number with 22 million digits is the biggest ever found subkhnemux 19 January 2016 Chang Kenneth 21 January 2016 New Biggest Prime Number 2 to the 74 Mil Uh It s Big New York Times subkhnemux 22 January 2016 There is no mentioning among the ancient Egyptians of prime numbers and they did not have any concept for prime numbers known today In the 1650 BC the Egyptian fraction expansions have fairly different forms for primes and composites so it may be argued that they knew about prime numbers The Egyptians used in the table above for the first primes r 3 5 7 or 11 also for r 23 Here is another intriguing observation That the Egyptians stopped the use of at 11 suggests they understood at least some parts of Eratosthenes s Sieve 2000 years before Eratosthenes discovered it The Rhind 2 n Table Retrieved 2012 11 11 In the school of Pythagoras b about 570 d about 495 BC and the we find the first sure observations of prime numbers Hence the first two Mersenne primes 3 and 7 were known to and may even be said to have been discovered by them There is no reference though to their special form 22 1 and 23 1 as such The sources to the knowledge of prime numbers among the Pythagoreans are late The Neoplatonic philosopher AD c 245 c 325 states that the Greek Platonic philosopher c 408 339 8 BC wrote a book named On Pythagorean Numbers According to Iamblichus this book was based on the works of the Pythagorean c 470 c 385 BC who lived a century after Pythagoras 570 c 495 BC In his Theology of Arithmetic in the chapter On the Decad Iamblichus writes Speusippus the son of Plato s sister Potone and head of the Academy before Xenocrates compiled a polished little book from the Pythagorean writings which were particularly valued at any time and especially from the writings of Philolaus he entitled the book On Pythagorean Numbers In the first half of the book he elegantly expounds linear numbers i e prime numbers polygonal numbers and all sorts of plane numbers solid numbers and the five figures which are assigned to the elements of the universe discussing both their individual attributes and their shared features and their proportionality and reciprocity Iamblichus The Theology of Arithmetic translated by Robin Waterfiled 1988 p 112f Retrieved 2012 11 11 also gives us a direct quote from book where among other things writes Secondly it is necessary for a perfect number the concept perfect number is not used here in a modern sense to contain an equal amount of prime and incomposite numbers and secondary and composite numbers Iamblichus The Theology of Arithmetic translated by Robin Waterfiled 1988 p 113 Retrieved 2012 11 11 For the Greek original text see Speusippus of Athens A Critical Study with a Collection of the Related Texts and Commentary by Leonardo Taran 1981 p 140 line 21 22 Retrieved 2012 11 11 In his comments to s also mentions that ca 400 BC ca 350 BC uses the term rectilinear for prime numbers and that fl AD 100 uses euthymetric and linear as alternative terms Nicomachus of Gerasa Introduction to Arithmetic 1926 p 127 Retrieved 2012 11 11 It is unclear though when this said Thymaridas lived In a highly suspect passage in Iamblichus Thymaridas is listed as a pupil of Pythagoras himself Pythagoreanism Retrieved 2012 11 11 Before c 470 c 385 BC we have no proof of any knowledge of prime numbers Euclid s Elements Book IX Proposition 36 The Prime Pages Mersenne Primes History Theorems and Lists We find the oldest undisputed note of the result in Codex nr 14908 which origins from Bibliotheca monasterii ord S Benedicti ad S Emmeramum Ratisbonensis now in the archive of the Bayerische Staatsbibliothek see Halm Karl Laubmann Georg von Meyer Wilhelm Catalogus codicum latinorum Bibliothecae Regiae Monacensis Bd 2 2 Monachii 1876 p 250 retrieved on 2012 09 17 The Codex nr 14908 consists of 10 different medieval works on mathematics and related subjects The authors of most of these writings are known Some authors consider the monk Fridericus Gerhart Amman 1400 1465 Frater Fridericus Gerhart monachus ordinis sancti Benedicti astrologus professus in monasterio sancti Emmerani diocesis Ratisponensis et in ciuitate eiusdem to be the author of the part where the prime number 8191 is mentioned Geschichte Der Mathematik retrieved on 2012 09 17 The second manuscript of Codex nr 14908 has the name Regulae et exempla arithmetica algebraica geometrica and the 5th perfect number and all is factors including 8191 are mentioned on folio no 34 a tergo backside of p 34 Parts of the manuscript have been published in Archiv der Mathematik und Physik 13 1895 pp 388 406 retrieved on 2012 09 23 A i lettori Nel trattato de numeri perfetti che giafino dell anno 1588 composi oltrache se era passato auati a trouarne molti auertite molte cose se era anco amplamente dilatatala Tauola de numeri composti di ciascuno de quali si vedeano per ordine li componenti onde preposto unnum p 1 in Trattato de nvumeri perfetti Di Pietro Antonio Cataldo 1603 http fermi imss fi it rd bdv bdviewer selid 1373775 lingkesiy pp 13 18 in Trattato de nvumeri perfetti Di Pietro Antonio Cataldo 1603 http fermi imss fi it rd bdv bdviewer selid 1373775 lingkesiy pp 18 22 in Trattato de nvumeri perfetti Di Pietro Antonio Cataldo 1603 http fermi imss fi it rd bdv bdviewer selid 1373775 lingkesiy http bibliothek bbaw de bbaw bibliothek digital digitalequellen schriften anzeige index html band 03 nouv 1772 amp seite int 36 2012 03 31 thi ewyaebkaemchchin Nouveaux Memoires de l Academie Royale des Sciences et Belles Lettres 1772 pp 35 36 EULER Leonhard Extrait d une lettre a M Bernoulli concernant le Memoire imprime parmi ceux de 1771 p 318 intitule Recherches sur les diviseurs de quelques nombres tres grands compris dans la somme de la progression geometrique 1 101 102 103 10T S Retrieved 2011 10 02 http primes utm edu notes by year html 31 The date and year of discovery is unsure Dates between 1752 and 1772 are possible Chris K Caldwell Modular restrictions on Mersenne divisors Primes utm edu subkhnemux 2011 05 21 En novembre de l annee 1883 dans la correspondance de notre Academie se trouve une communication qui contient l assertion que le nombre 261 1 2305843009213693951 est un nombre premier Le tome XLVIII des Memoires Russes de l Academie contient le compte rendu de la seance du 20 decembre 1883 dans lequel l objet de la communication du pere Pervouchine est indique avec precision Bulletin de l Academie Imperiale des Sciences de St Petersbourg s 3 v 31 1887 cols 532 533 http www biodiversitylibrary org item 107789 page 277 mode 1up retrieved 2012 09 17 See also Melanges mathematiques et astronomiques tires du Bulletin de l Academie imperiale des sciences de St Petersbourg v 6 1881 1888 pp 553 554 See also Memoires de l Academie imperiale des sciences de St Petersbourg Sciences mathematiques physiques et naturelles vol 48 Powers R E 1 January 1911 The Tenth Perfect Number The American Mathematical Monthly 18 11 195 197 doi 10 2307 2972574 JSTOR 2972574 M E Fauquenbergue a trouve ses resultats depuis Fevrier et j en ai recu communication le 7 Juin M Powers a envoye le 1er Juin un cablogramme a secretary of London Mathematical Society pour M107 Sur ma demande ces deux auteurs m ont adresse leurs remarquables resultats et je m empresse de les publier dans nos colonnes avec nos felicitations p 103 Andre Gerardin Nombres de Mersenne pp 85 103 108 in Sphinx Œdipe Journal mensuel de la curiosite de concours amp de mathematiques v 9 No 1 1914 Power s cable announcing this same result was sent to the London Math So on 1 June 1914 Mersenne s Numbers Scripta Mathematica v 3 1935 pp 112 119 http primes utm edu mersenne LukeMirror lit lit 008s htm retrieved 2012 10 13 http plms oxfordjournals org content s2 13 1 1 1 full pdf Proceedings London Mathematical Society 1914 s2 13 1 1 Result presented at a meeting with London Mathematical Society on June 11 1914 Retrieved 2011 10 02 The Prime Pages M107 Fauquembergue or Powers http visualiseur bnf fr CadresFenetre O NUMM 3039 amp I 166 amp M chemindefer Presented at a meeting with Academie des sciences France on January 10 1876 Retrieved 2011 10 02 Using the standard Lucas test for Mersenne primes as programmed by R M Robinson the SWAC has discovered the primes 2521 1 and 2607 1 on January 30 1952 D H Lehmer Recent Discoveries of Large Primes Mathematics of Computation vol 6 No 37 1952 p 61 http www ams org journals mcom 1952 06 037 S0025 5718 52 99404 0 S0025 5718 52 99404 0 pdf Retrieved 2012 09 18 The program described in Note 131 c has produced the 15th Mersenne prime 21279 1 on June 25 The SWAC tests this number in 13 minutes and 25 seconds D H Lehmer A New Mersenne Prime Mathematics of Computation vol 6 No 39 1952 p 205 http www ams org journals mcom 1952 06 039 S0025 5718 52 99387 3 S0025 5718 52 99387 3 pdf Retrieved 2012 09 18 Two more Mersenne primes 22203 1 and 22281 1 were discovered by the SWAC on October 7 and 9 1952 D H Lehmer Two New Mersenne Primes Mathematics of Computation vol 7 No 41 1952 p 72 http www ams org journals mcom 1953 07 041 S0025 5718 53 99371 5 S0025 5718 53 99371 5 pdf Retrieved 2012 09 18 On September 8 1957 the Swedish electronic computer BESK established that the Mersenne number M3217 23217 1 is a prime Hans Riesel A New Mersenne Prime Mathematics of Computation vol 12 1958 p 60 http www ams org journals mcom 1958 12 061 S0025 5718 1958 0099752 6 S0025 5718 1958 0099752 6 pdf Retrieved 2012 09 18 A Hurwitz and J L Selfridge Fermat numbers and perfect numbers Notices of the American Mathematical Society v 8 1961 p 601 abstract 587 104 If p is prime Mp 2p 1 is called a Mersenne number The primes M4253 and M4423 were discovered by coding the Lucas Lehmer test for the IBM 7090 Alexander Hurwitz New Mersenne Primes Mathematics of Computation vol 16 No 78 1962 pp 249 251 http www ams org journals mcom 1962 16 078 S0025 5718 1962 0146162 X S0025 5718 1962 0146162 X pdf Retrieved 2012 09 18 The primes M9689 M9941 and M11213 which are now the largest known primes were discovered by Illiac II at the Digital Computer Laboratory of the University of Illinois Donald B Gillies Three New Mersenne Primes and a Statistical Theory Mathematics of Computation vol 18 No 85 1964 pp 93 97 http www ams org journals mcom 1964 18 085 S0025 5718 1964 0159774 6 S0025 5718 1964 0159774 6 pdf Retrieved 2012 09 18 On the evening of March 4 1971 a zero Lucas Lehmer residue for p p24 19937 was found Hence M19937 is the 24th Mersenne prime Bryant Tuckerman The 24th Mersenne Prime Proceedings of the National Academy of Sciences of the United States of America vol 68 10 1971 pp 2319 2320 http www pnas org content 68 10 2319 full pdf Retrieved 2012 09 18 On October 30 1978 at 9 40 pm we found M21701 to be prime The CPU time required for this test was 7 40 20 Tuckerman and Lehmer later provided confirmation of this result Curt Noll and Laura Nickel The 25th and 26th Mersenne Primes Mathematics of Computation vol 35 No 152 1980 pp 1387 1390 http www ams org journals mcom 1980 35 152 S0025 5718 1980 0583517 4 S0025 5718 1980 0583517 4 pdf Retrieved 2012 09 18 Of the 125 remaining Mp only M23209 was found to be prime The test was completed on February 9 1979 at 4 06 after 8 39 37 of CPU time Lehmer and McGrogan later confirmed the result Curt Noll and Laura Nickel The 25th and 26th Mersenne Primes Mathematics of Computation vol 35 No 152 1980 pp 1387 1390 http www ams org journals mcom 1980 35 152 S0025 5718 1980 0583517 4 S0025 5718 1980 0583517 4 pdf Retrieved 2012 09 18 David Slowinski Searching for the 27th Mersenne Prime Journal of Recreational Mathematics v 11 4 1978 79 pp 258 261 MR 80g 10013 The 27th Mersenne prime It has 13395 digits and equals 244497 1 Its primeness was determined on April 8 1979 using the Lucas Lehmer test The test was programmed on a CRAY 1 computer by David Slowinski amp Harry Nelson p 15 The result was that after applying the Lucas Lehmer test to about a thousand numbers the code determined on Sunday April 8th that 244497 1 is in fact the 27th Mersenne prime p 17 David Slowinski Searching for the 27th Mersenne Prime Cray Channels vol 4 no 1 1982 pp 15 17 An FFT containing 8192 complex elements which was the minimum size required to test M110503 ran approximately 11 minutes on the SX 2 The discovery of M110503 January 29 1988 has been confirmed W N Colquitt and L Welsh Jr A New Mersenne Prime Mathematics of Computation vol 56 No 194 April 1991 pp 867 870 http www ams org journals mcom 1991 56 194 S0025 5718 1991 1068823 9 S0025 5718 1991 1068823 9 pdf Retrieved 2012 09 18 This week two computer experts found the 31st Mersenne prime But to their surprise the newly discovered prime number falls between two previously known Mersenne primes It occurs when p 110 503 making it the third largest Mersenne prime known I Peterson Priming for a lucky strike Science News 2 6 88 Vol 133 Issue 6 pp 85 85 http ehis ebscohost com ehost detail vid 3 amp hid 23 amp sid 9a9d7493 ffed 410b 9b59 b86c63a93bc4 40sessionmgr10 amp bdata JnNpdGU9ZWhvc3QtbGl2ZQ 3d 3d db afh amp AN 8824187 Retrieved 2012 09 18 Mersenne Prime Numbers Omes uni bielefeld de 2011 01 05 subkhnemux 2011 05 21 Slowinski a software engineer for Cray Research Inc in Chippewa Falls discovered the number at 11 36 a m Monday i e 1983 September 19 Jim Higgins Elusive numeral s number is up and Scientist finds big number in The Milwaukee Sentinel Sep 24 1983 p 1 p 11 retrieved 2012 10 23 The number is the 30th known example of a Mersenne prime a number divisible only by 1 and itself and written in the form 2p 1 where the exponent p is also a prime number For instance 127 is a Mersenne number for which the exponent is 7 The record prime number s exponent is 216 091 I Peterson Prime time for supercomputers Science News 9 28 85 Vol 128 Issue 13 p 199 http ehis ebscohost com ehost detail vid 4 amp hid 22 amp sid c11090a2 4670 469f 8f75 947b593a56a0 40sessionmgr10 amp bdata JnNpdGU9ZWhvc3QtbGl2ZQ 3d 3d db afh amp AN 8840537 Retrieved 2012 09 18 Slowinski s program also found the 28th in 1982 the 29th in 1983 and the 30th known at that time this past Labor Day weekend i e August 31 September 1 1985 Rad Sallee Supercomputer Chevron calculating device finds a bigger prime number Houston Chronicle Friday 09 20 1985 Section 1 Page 26 4 Star Edition retrieved 2012 10 23 The Prime Pages The finding of the 32nd Mersenne Chris Caldwell The Largest Known Primes 1998 12 02 thi ewyaebkaemchchin Crays press release Slowinskis email Silicon Graphics press release Retrieved 2012 09 20 The Prime Pages A Prime of Record Size 21257787 1 GIMPS Discovers 35th Mersenne Prime GIMPS Discovers 36th Known Mersenne Prime GIMPS Discovers 37th Known Mersenne Prime GIMPS Finds First Million Digit Prime Stakes Claim to 50 000 EFF Award GIMPS Researchers Discover Largest Multi Million Digit Prime Using Entropia Distributed Computing Grid GIMPS Mersenne Project Discovers Largest Known Prime Number on World Wide Volunteer Computer Grid GIMPS Mersenne org Project Discovers New Largest Known Prime Number 224 036 583 1 GIMPS Mersenne org Project Discovers New Largest Known Prime Number 225 964 951 1 GIMPS Mersenne org Project Discovers New Largest Known Prime Number 230 402 457 1 GIMPS Mersenne org Project Discovers Largest Known Prime Number 232 582 657 1 Titanic Primes Raced to Win 100 000 Research Award Retrieved on 2008 09 16 On April 12th 2009 the 47th known Mersenne prime 242 643 801 1 a 12 837 064 digit number was found by Odd Magnar Strindmo from Melhus Norway This prime is the second largest known prime number a mere 141 125 digits smaller than the Mersenne prime found last August The List of Largest Known Primes Home Page http primes utm edu primes page php id 88847 retrieved 2012 09 18 GIMPS Discovers 48th Mersenne Prime 257 885 161 1 is now the Largest Known Prime subkhnemux 2016 01 19 List of known Mersenne prime numbers subkhnemux 29 November 2014 m missuriphbcanwnechphaakhnadihythisud 9 1 lanhlk 2007 06 30 thi ewyaebkaemchchin ody phucdkarxxniln 5 mkrakhm 2549 06 55 n bthkhwamkhnitsastrniyngepnokhrng khunsamarthchwywikiphiediyidodykarephimetimkhxmuldk